login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323270
Expansion of x*(1-x)*(3-13*x+24*x^2-17*x^3-18*x^4+35*x^5-3*x^6-14*x^7+x^9) / (1-7*x+20*x^2-30*x^3+16*x^4+20*x^5-32*x^6+6*x^7+11*x^8-2*x^9-x^10).
1
0, 3, 5, 12, 33, 92, 257, 715, 1988, 5529, 15377, 42745, 118775, 330015, 917059, 2548644, 7083187, 19684909, 54704928, 152026360, 422489498, 1174129226, 3262989670, 9068054805, 25200655379, 70034119048, 194629155239, 540886699852, 1503158050714, 4177369402390, 11609167438104, 32262594620909
OFFSET
0,2
LINKS
K. A. Van'kov, V. M. Zhuravlyov, Regular tilings and generating functions, Mat. Pros. Ser. 3, issue 22, 2018 (127-157) [in Russian]. See Theorem 3.
Index entries for linear recurrences with constant coefficients, signature (7,-20,30,-16,-20,32,-6,-11,2,1).
FORMULA
a(n) = 7*a(n-1) - 20*a(n-2) + 30*a(n-3) - 16*a(n-4) - 20*a(n-5) + 32*a(n-6) - 6*a(n-7) - 11*a(n-8) + 2*a(n-9) + a(n-10). - Colin Barker, Jan 10 2019
MATHEMATICA
CoefficientList[Series[x(1-x)(3-13x+24x^2-17x^3-18x^4+35x^5- 3x^6- 14x^7+ x^9) / (1-7x+20x^2-30x^3+16x^4+20x^5-32x^6+ 6x^7+ 11x^8-2x^9-x^10), {x, 0, 50}], x] (* or *) LinearRecurrence[{7, -20, 30, -16, -20, 32, -6, -11, 2, 1}, {0, 3, 5, 12, 33, 92, 257, 715, 1988, 5529, 15377, 42745}, 40] (* Harvey P. Dale, Mar 06 2023 *)
PROG
(PARI) concat(0, Vec(x*(1 - x)*(3 - 13*x + 24*x^2 - 17*x^3 - 18*x^4 + 35*x^5 - 3*x^6 - 14*x^7 + x^9) / (1 - 7*x + 20*x^2 - 30*x^3 + 16*x^4 + 20*x^5 - 32*x^6 + 6*x^7 + 11*x^8 - 2*x^9 - x^10) + O(x^40))) \\ Colin Barker, Jan 10 2019
CROSSREFS
Sequence in context: A046091 A002905 A220832 * A376161 A087610 A378344
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jan 09 2019
STATUS
approved