login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A087610
Number of (-1,0,1) polynomials of degree-n irreducible over the integers.
6
3, 5, 12, 34, 104, 292, 916, 2791, 8660, 26538, 81584, 248554
OFFSET
1,1
COMMENTS
A (-1,0,1) polynomial is defined as a monic polynomial whose remaining coefficients are either -1, 0, or 1. For each n, there are 3^n polynomials to consider.
LINKS
Eric Weisstein's World of Mathematics, Irreducible Polynomial
EXAMPLE
a(2) = 5 because 1+x+x^2, 1+x^2, 1-x+x^2, -1+x+x^2, -1-x+x^2 are irreducible over the integers.
MAPLE
F:= proc(n) local T, count, t, x, p;
if n::odd then
T:= combinat:-cartprod([[-1, 0, 1]$(n-1), [1]])
else
T:= combinat:-cartprod([[-1, 0, 1]$(n-1), [-1, 1]])
fi;
count:= 0;
while not T[finished] do
t:= T[nextvalue]();
p:= x^n + add(t[i]*x^(n-i), i=1..n);
if irreduc(p) then count:= count+1 fi;
od;
if n::odd then 2*count else count fi;
end proc:
3, seq(F(n), n=2..11); # Robert Israel, Dec 10 2015
MATHEMATICA
Irreducible[p_, n_] := Module[{f}, f=FactorList[p, Modulus->n]; Length[f]==1 || Simplify[p-f[[2, 1]]]===0]; Table[xx=x^Range[0, n-1]; cnt=0; Do[p=x^n+xx.(IntegerDigits[i, 3, n]-1); If[Irreducible[p, 0], cnt++ ], {i, 0, 3^n-1}]; cnt, {n, 10}]
CROSSREFS
Cf. A087481 (irreducible polynomials of the form x^n +- x^(n-1) +- x^(n-2) +- ... +- 1), A087482 (irreducible binary polynomials).
Sequence in context: A220832 A323270 A376161 * A378344 A243013 A191636
KEYWORD
nonn,more
AUTHOR
T. D. Noe, Sep 11 2003
EXTENSIONS
a(11) and a(12) from Robert Israel, Dec 10 2015
STATUS
approved