OFFSET
1,1
COMMENTS
A (-1,0,1) polynomial is defined as a monic polynomial whose remaining coefficients are either -1, 0, or 1. For each n, there are 3^n polynomials to consider.
LINKS
Eric Weisstein's World of Mathematics, Irreducible Polynomial
EXAMPLE
a(2) = 5 because 1+x+x^2, 1+x^2, 1-x+x^2, -1+x+x^2, -1-x+x^2 are irreducible over the integers.
MAPLE
F:= proc(n) local T, count, t, x, p;
if n::odd then
T:= combinat:-cartprod([[-1, 0, 1]$(n-1), [1]])
else
T:= combinat:-cartprod([[-1, 0, 1]$(n-1), [-1, 1]])
fi;
count:= 0;
while not T[finished] do
t:= T[nextvalue]();
p:= x^n + add(t[i]*x^(n-i), i=1..n);
if irreduc(p) then count:= count+1 fi;
od;
if n::odd then 2*count else count fi;
end proc:
3, seq(F(n), n=2..11); # Robert Israel, Dec 10 2015
MATHEMATICA
Irreducible[p_, n_] := Module[{f}, f=FactorList[p, Modulus->n]; Length[f]==1 || Simplify[p-f[[2, 1]]]===0]; Table[xx=x^Range[0, n-1]; cnt=0; Do[p=x^n+xx.(IntegerDigits[i, 3, n]-1); If[Irreducible[p, 0], cnt++ ], {i, 0, 3^n-1}]; cnt, {n, 10}]
CROSSREFS
KEYWORD
nonn,more
AUTHOR
T. D. Noe, Sep 11 2003
EXTENSIONS
a(11) and a(12) from Robert Israel, Dec 10 2015
STATUS
approved