login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A087481
Number of polynomials of the form x^n +- x^(n-1) +- x^(n-2) +- ... +- 1 irreducible over the integers.
2
2, 4, 4, 16, 12, 48, 64, 192, 260, 1024, 1128, 4096, 4480, 13310, 20620, 65434, 76376, 262144, 358532, 932134, 1391720, 4194090, 5447256, 16570740, 23153832, 61696126, 97361128
OFFSET
1,1
COMMENTS
For each n, there are 2^n polynomials to consider. All 2^n polynomials are irreducible for n = 1, 2, 4, 10, 12, 18, which is sequence A071642. For those values of n, n+1 is a prime in Artin's primitive root conjecture (A001122).
Since p(x) is irreducible iff (-1)^n*p(-x) is irreducible, all terms are even. - Robert Israel, Dec 22 2014
FORMULA
a(n) = 2^n for n a term of A071642; see first comment.
MAPLE
f:= proc(n) local t, j, p0, p;
p0:= add(x^j, j = 0 .. n);
2*nops(select(s -> irreduc(p0 - 2*add(x^(j-1), j = s)), combinat:-powerset(n-1)));
end proc:
seq(f(n), n=1..18); # Robert Israel, Dec 22 2014
MATHEMATICA
Irreducible[p_, n_] := Module[{f}, f=FactorList[p, Modulus->n]; Length[f]==1 || Simplify[p-f[[2, 1]]]===0]; Table[xx=x^Range[0, n-1]; cnt=0; Do[p=x^n+xx.(2*IntegerDigits[i, 2, n]-1); If[Irreducible[p, 0], cnt++ ], {i, 0, 2^n-1}]; cnt, {n, 18}]
PROG
(SageMath) R.<x>=Z[]; a(n) = sum((x^n + sum(( 2 * ((b & (1<<d)) >> d) - 1 ) * x^d for d in range(n))).is_irreducible() for b in range(2^n))
CROSSREFS
Cf. A001122, A071642, A087482 (irreducible binary polynomials).
Sequence in context: A246047 A079102 A071337 * A038210 A244640 A230874
KEYWORD
nonn,hard,more
AUTHOR
T. D. Noe, Sep 09 2003
EXTENSIONS
a(19) from Robert Israel, Dec 22 2014
a(20)-a(27) from Lucas A. Brown, May 19 2023
STATUS
approved