login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A087482
Number of binary polynomials of degree n irreducible over the integers.
2
2, 2, 2, 6, 8, 21, 34, 84, 150, 331, 614, 1417, 2638, 5508, 10874, 23437, 44862, 95887, 185238, 390297, 765510, 1557427, 3043918, 6525948, 12706892, 25836122, 51135384, 105070336, 206266718, 426254492
OFFSET
1,1
COMMENTS
A binary polynomial is defined as a monic polynomial whose remaining coefficients are either 0 or 1. For each n, there are 2^n polynomials to consider.
LINKS
Eric Weisstein's World of Mathematics, Irreducible Polynomial
FORMULA
a(n) >= A001037(n). - Joerg Arndt, Dec 22 2014
MATHEMATICA
Irreducible[p_, n_] := Module[{f}, f=FactorList[p, Modulus->n]; Length[f]==1 || Simplify[p-f[[2, 1]]]===0]; Table[xx=x^Range[0, n-1]; cnt=0; Do[p=x^n+xx.(IntegerDigits[i, 2, n]); If[Irreducible[p, 0], cnt++ ], {i, 0, 2^n-1}]; cnt, {n, 16}]
PROG
(PARI) a(n)= { if( n<=2, return(2)); my(d, P, ct=0, x='x); forstep (k=1, 2^n-1, 2, P=x^n+Pol(binary(k), x); ct+=polisirreducible(P) ); return(ct); }
for(n=1, 30, print1(a(n), ", ")); \\ Joerg Arndt, Dec 22 2014
CROSSREFS
Cf. A087481 (irreducible polynomials of the form x^n +- x^(n-1) +- x^(n-2) +- ... +- 1).
Cf. A001037 (irreducible polynomials over GF(2)).
Sequence in context: A298745 A323860 A121698 * A137227 A323862 A291667
KEYWORD
nonn,more
AUTHOR
T. D. Noe, Sep 09 2003
EXTENSIONS
Added more terms, Joerg Arndt, Dec 22 2014
a(23)-a(30) from Max Alekseyev, May 07 2022
STATUS
approved