login
A323860
Table read by antidiagonals where A(n,k) is the number of n X k aperiodic binary arrays.
13
2, 2, 2, 6, 8, 6, 12, 54, 54, 12, 30, 216, 486, 216, 30, 54, 990, 4020, 4020, 990, 54, 126, 3912, 32730, 64800, 32730, 3912, 126, 240, 16254, 261414, 1047540, 1047540, 261414, 16254, 240, 504, 64800, 2097018, 16764840, 33554250, 16764840, 2097018, 64800, 504
OFFSET
1,1
COMMENTS
The 1-dimensional case is A027375.
An n X k matrix is aperiodic if all n * k rotations of its sequence of rows and its sequence of columns are distinct.
LINKS
FORMULA
T(n,k) = n*k*A323861(n,k). - Andrew Howroyd, Aug 21 2019
EXAMPLE
Table begins:
1 2 3 4
------------------------
1: | 2 2 6 12
2: | 2 8 54 216
3: | 6 54 486 4020
4: | 12 216 4020 64800
The A(2,2) = 8 arrays:
[0 0] [0 0] [0 1] [0 1] [1 0] [1 0] [1 1] [1 1]
[0 1] [1 0] [0 0] [1 1] [0 0] [1 1] [0 1] [1 0]
Note that the following are not aperiodic even though their row and column sequences are independently aperiodic:
[1 0] [0 1]
[0 1] [1 0]
MATHEMATICA
apermatQ[m_]:=UnsameQ@@Join@@Table[RotateLeft[m, {i, j}], {i, Length[m]}, {j, Length[First[m]]}];
Table[Length[Select[Partition[#, n-k]&/@Tuples[{0, 1}, (n-k)*k], apermatQ]], {n, 8}, {k, n-1}]
PROG
(GAP) # See A323861 for code.
for n in [1..8] do for k in [1..8] do Print(n*k*A323861(n, k), ", "); od; Print("\n"); od; # Andrew Howroyd, Aug 21 2019
CROSSREFS
First and last columns are A027375. Main diagonal is A323863.
Sequence in context: A151694 A361424 A298745 * A121698 A087482 A137227
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Feb 04 2019
EXTENSIONS
Terms a(29) and beyond from Andrew Howroyd, Aug 21 2019
STATUS
approved