login
A323859
Number of binary toroidal necklaces of size n.
12
1, 2, 6, 8, 19, 16, 56, 40, 152, 184, 432, 376, 2132, 1264, 4728, 8768, 20688, 15424, 87656, 55192, 315128, 399520, 762984, 729448, 5595408, 4026576, 10325712, 19884504, 57527804, 37025584, 286340544, 138547336, 805335364, 1041204704, 2021176512, 3926827328
OFFSET
0,2
COMMENTS
The 1-dimensional (necklace) case is A000031.
We define a toroidal necklace to be an equivalence class of matrices under all possible rotations of the sequence of rows and the sequence of columns. Alternatively, a toroidal necklace is a matrix that is minimal among all possible rotations of its sequence of rows and its sequence of columns.
LINKS
S. N. Ethier, Counting toroidal binary arrays, J. Int. Seq. 16 (2013) #13.4.7.
FORMULA
a(n) = (1/n) * Sum_{d|n} Sum_{e|d, f|(n/d)} phi(e) * phi(f) * 2^(n/lcm(d,n/d)). [Ethier]
EXAMPLE
Inequivalent representatives of the a(4) = 19 binary toroidal necklaces:
[0 0 0 0] [0 0 0 1] [0 0 1 1] [0 1 0 1] [0 1 1 1] [1 1 1 1]
.
[0 0] [0 0] [0 0] [0 1] [0 1] [0 1] [1 1]
[0 0] [0 1] [1 1] [0 1] [1 0] [1 1] [1 1]
.
[0] [0] [0] [0] [0] [1]
[0] [0] [0] [1] [1] [1]
[0] [0] [1] [0] [1] [1]
[0] [1] [1] [1] [1] [1]
MATHEMATICA
matcyc[m_]:=Union@@Table[RotateLeft[m, {i, j}], {i, Length[m]}, {j, Length[First[m]]}];
Table[If[n==0, 1, Length[Union[First/@matcyc/@Join@@(Table[Partition[#, d], {d, Divisors[n]}]&/@Tuples[{0, 1}, n])]]], {n, 0, 10}]
PROG
(PARI)
U(n, m, k) = (1/(n*m)) * sumdiv(n, c, sumdiv(m, d, eulerphi(c) * eulerphi(d) * k^(n*m/lcm(c, d))))
a(n) = if(n<1, n==0, sumdiv(n, d, U(n/d, d, 2))) \\ Andrew Howroyd, Jan 24 2023
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 04 2019
STATUS
approved