login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A151694
G.f.: Product_{k>=1} (1 + 2*x^(2^k-1) + 2*x^(2^k)).
10
1, 2, 2, 2, 6, 8, 4, 2, 6, 8, 8, 16, 28, 24, 8, 2, 6, 8, 8, 16, 28, 24, 12, 16, 28, 32, 48, 88, 104, 64, 16, 2, 6, 8, 8, 16, 28, 24, 12, 16, 28, 32, 48, 88, 104, 64, 20, 16, 28, 32, 48, 88, 104, 72, 56, 88, 120, 160, 272, 384, 336, 160, 32, 2, 6, 8, 8, 16, 28, 24, 12, 16, 28, 32, 48, 88
OFFSET
0,2
LINKS
David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
EXAMPLE
From Omar E. Pol, Jun 09 2009: (Start)
Triangle begins:
1;
2,2;
2,6,8,4;
2,6,8,8,16,28,24,8;
2,6,8,8,16,28,24,12,16,28,32,48,88,104,64,16;
2,6,8,8,16,28,24,12,16,28,32,48,88,104,64,20,16,28,32,48,88,104,72,56,88,...
(End)
MATHEMATICA
CoefficientList[Series[Product[1+2x^(2^k-1)+2x^2^k, {k, 10}], {x, 0, 80}], x] (* Harvey P. Dale, Oct 07 2020 *)
CROSSREFS
For generating functions of the form Product_{k>=c} (1 + a*x^(2^k-1) + b*x^2^k) for the following values of (a,b,c) see: (1,1,0) A160573, (1,1,1) A151552, (1,1,2) A151692, (2,1,0) A151685, (2,1,1) A151691, (1,2,0) A151688 and A152980, (1,2,1) A151550, (2,2,0) A151693, (2,2,1) A151694.
Cf. A000079. - Omar E. Pol, Jun 09 2009
Sequence in context: A081478 A105341 A194676 * A361424 A298745 A323860
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 04 2009
STATUS
approved