login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: Product_{k>=1} (1 + 2*x^(2^k-1) + 2*x^(2^k)).
10

%I #18 Oct 04 2024 20:51:11

%S 1,2,2,2,6,8,4,2,6,8,8,16,28,24,8,2,6,8,8,16,28,24,12,16,28,32,48,88,

%T 104,64,16,2,6,8,8,16,28,24,12,16,28,32,48,88,104,64,20,16,28,32,48,

%U 88,104,72,56,88,120,160,272,384,336,160,32,2,6,8,8,16,28,24,12,16,28,32,48,88

%N G.f.: Product_{k>=1} (1 + 2*x^(2^k-1) + 2*x^(2^k)).

%H David Applegate, Omar E. Pol and N. J. A. Sloane, <a href="/A000695/a000695_1.pdf">The Toothpick Sequence and Other Sequences from Cellular Automata</a>, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]

%H N. J. A. Sloane, <a href="/wiki/Catalog_of_Toothpick_and_CA_Sequences_in_OEIS">Catalog of Toothpick and Cellular Automata Sequences in the OEIS</a>

%e From _Omar E. Pol_, Jun 09 2009: (Start)

%e Triangle begins:

%e 1;

%e 2,2;

%e 2,6,8,4;

%e 2,6,8,8,16,28,24,8;

%e 2,6,8,8,16,28,24,12,16,28,32,48,88,104,64,16;

%e 2,6,8,8,16,28,24,12,16,28,32,48,88,104,64,20,16,28,32,48,88,104,72,56,88,...

%e (End)

%t CoefficientList[Series[Product[1+2x^(2^k-1)+2x^2^k,{k,10}],{x,0,80}],x] (* _Harvey P. Dale_, Oct 07 2020 *)

%Y For generating functions of the form Product_{k>=c} (1 + a*x^(2^k-1) + b*x^2^k) for the following values of (a,b,c) see: (1,1,0) A160573, (1,1,1) A151552, (1,1,2) A151692, (2,1,0) A151685, (2,1,1) A151691, (1,2,0) A151688 and A152980, (1,2,1) A151550, (2,2,0) A151693, (2,2,1) A151694.

%Y Cf. A000079. - _Omar E. Pol_, Jun 09 2009

%K nonn

%O 0,2

%A _N. J. A. Sloane_, Jun 04 2009