login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A151685
a(n) = Sum_{k >= 0} bin2(wt(n+k),k+1), where bin2(i,j) = A013609(i,j), wt(i) = A000120(i).
11
3, 7, 5, 7, 17, 17, 7, 7, 17, 17, 19, 41, 51, 31, 9, 7, 17, 17, 19, 41, 51, 31, 21, 41, 51, 55, 101, 143, 113, 49, 11, 7, 17, 17, 19, 41, 51, 31, 21, 41, 51, 55, 101, 143, 113, 49, 23, 41, 51, 55, 101, 143, 113, 73, 103, 143, 161, 257, 387, 369, 211, 71, 13, 7, 17, 17, 19, 41, 51
OFFSET
0,1
COMMENTS
Or, a(n) = Sum_{k >= 0} 2^wt(k) * binomial(wt(n+k),k).
LINKS
David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
FORMULA
G.f.: Product_{ k >= 0 } (1 + 2*x^(2^k-1) + x^(2^k)).
EXAMPLE
Contribution from Omar E. Pol, Jun 09 2009: (Start)
Triangle begins:
.3;
.7,5;
.7,17,17,7;
.7,17,17,19,41,51,31,9;
.7,17,17,19,41,51,31,21,41,51,55,101,143,113,49,11;
.7,17,17,19,41,51,31,21,41,51,55,101,143,113,49,23,41,51,55,101,143,113,...
(End)
MAPLE
bin2:=proc(n, k) option remember; if k<0 or k>n then 0
elif k=0 then 1 else 2*bin2(n-1, k-1)+bin2(n-1, k); fi; end;
wt := proc(n) local w, m, i;
w := 0; m := n; while m > 0 do i := m mod 2; w := w+i; m := (m-i)/2; od; w; end:
f:=n->add( bin2(wt(n+k), k), k=0..120 );
# or:
f := n->add( 2^k*binomial(wt(n+k), k), k=0..20 );
MATHEMATICA
max = 70; (* number of terms *)
CoefficientList[Product[1 + 2*x^(2^k-1) + x^(2^k), {k, 0, Log2[max+1] // Ceiling}] + O[x]^max, x] (* Jean-François Alcover, Aug 03 2022 *)
CROSSREFS
For generating functions of the form Product_{k>=c} (1+a*x^(2^k-1)+b*x^2^k) for the following values of (a,b,c) see: (1,1,0) A160573, (1,1,1) A151552, (1,1,2) A151692, (2,1,0) A151685, (2,1,1) A151691, (1,2,0) A151688 and A152980, (1,2,1) A151550, (2,2,0) A151693, (2,2,1) A151694.
Cf. A000079. - Omar E. Pol, Jun 09 2009
Sequence in context: A287660 A122001 A161327 * A019809 A305741 A021270
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 01 2009
STATUS
approved