OFFSET
0,1
COMMENTS
Sequence mentioned in the Applegate-Pol-Sloane article; see Section 9, "explicit formulas." - Omar E. Pol, Sep 20 2011
REFERENCES
D. Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191
LINKS
David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.], which is also available at arXiv:1004.3036v2
N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
FORMULA
EXAMPLE
a(5) = binomial(2,0) + binomial(2,1) + binomial(3,2) + binomial(1,3) + binomial(2,4) + binomial(2,5) + ... = 1 + 2 + 3 + 0 + 0 + 0 + ... = 6
From Omar E. Pol, Jun 09 2009: (Start)
Triangle begins:
2;
3;3;
3,5,6,4;
3,5,6,6,8,11,10,5;
3,5,6,6,8,11,10,7,8,11,12,14,19,21,15,6;
3,5,6,6,8,11,10,7,8,11,12,14,19,21,15,8,8,11,12,14,19,21,17,15,19,23,26,...
(End)
MAPLE
See A118977 for Maple code.
MATHEMATICA
max = 80; Product[1 + x^(2^k - 1) + x^(2^k), {k, 0, Ceiling[Log[2, max]]}] + O[x]^max // CoefficientList[#, x]& (* Jean-François Alcover, Nov 10 2016 *)
CROSSREFS
For generating functions of the form Product_{k>=c} (1+a*x^(2^k-1)+b*x^2^k) for the following values of (a,b,c) see: (1,1,0) A160573, (1,1,1) A151552, (1,1,2) A151692, (2,1,0) A151685, (2,1,1) A151691, (1,2,0) A151688 and A152980, (1,2,1) A151550, (2,2,0) A151693, (2,2,1) A151694.
Cf. A151552 (g.f. has one factor fewer).
Limiting form of rows of A118977 when that sequence is written as a triangle and the initial 1 is omitted. - N. J. A. Sloane, Jun 01 2009
KEYWORD
nonn
AUTHOR
Hagen von Eitzen, May 20 2009
STATUS
approved