OFFSET
0,3
COMMENTS
When convolved with [1, 2, 2, 2, ...] gives the toothpick sequence A153006: (1, 3, 6, 9, ...). - Gary W. Adamson, May 25 2009
This sequence and the Adamson's comment both are mentioned in the Applegate-Pol-Sloane article, see chapter 8 "generating functions". - Omar E. Pol, Sep 20 2011
REFERENCES
D. Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 0..16383
David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.], which is also available at arXiv:1004.3036v2, [math.CO], 2010.
N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
FORMULA
To get a nice recurrence, change the offset to 0 and multiply the g.f. by x as in the triangle in the example lines. Then we have: a(0)=0; a(2^i)=1; a(2^i-1)=2^(i-1) for i >= 1; otherwise write n = 2^i+j with 1 <= j <= 2^i-2, then a(n) = a(2^i+j) = 2*a(j) + a(j+1).
EXAMPLE
From Omar E. Pol, Jun 09 2009, edited by N. J. A. Sloane, Jun 17 2009:
May be written as a triangle:
0;
1;
1,2;
1,3,4,4;
1,3,4,5,5,10,12,8;
1,3,4,5,5,10,12,9,5,10,13,15,20,32,32,16;
1,3,4,5,5,10,12,9,5,10,13,15,20,32,32,17,5,10,13,15,20,32,33,23,20,33,41,...
The rows of the triangle converge to A151555.
MATHEMATICA
terms = 100;
CoefficientList[Product[(1+x^(2^n-1) + 2 x^(2^n)), {n, 1, Log[2, terms] // Ceiling}] + O[x]^terms, x] (* Jean-François Alcover, Aug 05 2018 *)
CROSSREFS
For generating functions of the form Product_{k>=c} (1+a*x^(2^k-1)+b*x^2^k) for the following values of (a,b,c) see: (1,1,0) A160573, (1,1,1) A151552, (1,1,2) A151692, (2,1,0) A151685, (2,1,1) A151691, (1,2,0) A151688 and A152980, (1,2,1) A151550, (2,2,0) A151693, (2,2,1) A151694.
Cf. A000079. - Omar E. Pol, Jun 09 2009
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 19 2009, Jun 17 2009
STATUS
approved