login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A151550
Expansion of g.f. Product_{n >= 1} (1 + x^(2^n-1) + 2*x^(2^n)).
16
1, 1, 2, 1, 3, 4, 4, 1, 3, 4, 5, 5, 10, 12, 8, 1, 3, 4, 5, 5, 10, 12, 9, 5, 10, 13, 15, 20, 32, 32, 16, 1, 3, 4, 5, 5, 10, 12, 9, 5, 10, 13, 15, 20, 32, 32, 17, 5, 10, 13, 15, 20, 32, 33, 23, 20, 33, 41, 50, 72, 96, 80, 32, 1, 3, 4, 5, 5, 10, 12, 9, 5, 10, 13, 15, 20, 32, 32, 17, 5, 10, 13
OFFSET
0,3
COMMENTS
When convolved with [1, 2, 2, 2, ...] gives the toothpick sequence A153006: (1, 3, 6, 9, ...). - Gary W. Adamson, May 25 2009
This sequence and the Adamson's comment both are mentioned in the Applegate-Pol-Sloane article, see chapter 8 "generating functions". - Omar E. Pol, Sep 20 2011
REFERENCES
D. Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191
LINKS
David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.], which is also available at arXiv:1004.3036v2, [math.CO], 2010.
FORMULA
To get a nice recurrence, change the offset to 0 and multiply the g.f. by x as in the triangle in the example lines. Then we have: a(0)=0; a(2^i)=1; a(2^i-1)=2^(i-1) for i >= 1; otherwise write n = 2^i+j with 1 <= j <= 2^i-2, then a(n) = a(2^i+j) = 2*a(j) + a(j+1).
EXAMPLE
From Omar E. Pol, Jun 09 2009, edited by N. J. A. Sloane, Jun 17 2009:
May be written as a triangle:
0;
1;
1,2;
1,3,4,4;
1,3,4,5,5,10,12,8;
1,3,4,5,5,10,12,9,5,10,13,15,20,32,32,16;
1,3,4,5,5,10,12,9,5,10,13,15,20,32,32,17,5,10,13,15,20,32,33,23,20,33,41,...
The rows of the triangle converge to A151555.
MATHEMATICA
terms = 100;
CoefficientList[Product[(1+x^(2^n-1) + 2 x^(2^n)), {n, 1, Log[2, terms] // Ceiling}] + O[x]^terms, x] (* Jean-François Alcover, Aug 05 2018 *)
CROSSREFS
For generating functions of the form Product_{k>=c} (1+a*x^(2^k-1)+b*x^2^k) for the following values of (a,b,c) see: (1,1,0) A160573, (1,1,1) A151552, (1,1,2) A151692, (2,1,0) A151685, (2,1,1) A151691, (1,2,0) A151688 and A152980, (1,2,1) A151550, (2,2,0) A151693, (2,2,1) A151694.
Cf. A000079. - Omar E. Pol, Jun 09 2009
Sequence in context: A345233 A128270 A367860 * A097003 A336926 A193788
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 19 2009, Jun 17 2009
STATUS
approved