OFFSET
0,4
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
T(n, k) = (1/n)*( n^n * Fibonacci(k)^(n+1) - n! * (Fibonacci(k) - 1) * Sum_{j=0..n} (n*Fibonacci(k))^j/j! ), with T(n, 0) = n! and T(n, 1) = n^(n-1).
EXAMPLE
Triangle begins as:
1;
1, 1;
2, 2, 2;
6, 9, 9, 22;
24, 64, 64, 266, 708;
120, 625, 625, 4536, 17457, 108129;
720, 7776, 7776, 100392, 563088, 5709120, 52517688;
5040, 117649, 117649, 2739472, 22516209, 375217945, 5489293264, 92757410569;
MATHEMATICA
T[n_, k_]:= If[k==0, n!, If[k==1, n^(n-1), (1/n)*(Fibonacci[k]^(n+1)*n^n - n!*(Fibonacci[k] -1)*Sum[n^j*Fibonacci[k]^j/j!, {j, 0, n}])]];
Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Jan 06 2022 *)
PROG
(Sage)
@CachedFunction
def A137227(n, k):
if (k==0): return factorial(n)
elif (k==1): return n^(n-1)
else: return (1/n)*(fibonacci(k)^(n+1)*n^n - factorial(n)*(fibonacci(k) -1)*sum((n*fibonacci(k))^j/factorial(j) for j in (0..n)))
flatten([[A137227(n, k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Jan 06 2022
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Mar 07 2008
EXTENSIONS
Edited by G. C. Greubel, Jan 06 2022
STATUS
approved