OFFSET
1,4
REFERENCES
E. Barcucci, S. Brunetti and F. Del Ristoro, Succession rules and deco polyominoes, Theoret. Informatics Appl., 34, 2000, 1-14.
E. Barcucci, A. Del Lungo and R. Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.
FORMULA
The row generating polynomials P[n](s) are given by P[n](s)=Q[n](1,s), where Q[n](t,s) are defined by Q[n](t,s)=Q[n-1](s,t)+[floor(n/2)*t+floor((n-1)/2)*s]Q[n-1](t,s) for n>=2 and Q[1](t,s]=t.
EXAMPLE
T(2,0)=1 and T(2,1)=1 because the deco polyominoes of height 2 are the horizontal and vertical dominoes, having 0 and 1 columns ending at an even level, respectively.
Triangle starts:
1;
1,1;
2,2,2;
6,8,7,3;
16,36,37,23,8;
62,172,220,166,80,20;
MAPLE
Q[1]:=t: for n from 2 to 10 do Q[n]:=expand(subs({t=s, s=t}, Q[n-1])+(t*floor(n/2)+s*floor((n-1)/2))*Q[n-1]) od: for n from 1 to 10 do P[n]:=sort(subs(t=1, Q[n])) od: for n from 0 to 10 do seq(coeff(P[n], s, j), j=0..n-1) od; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Aug 23 2006
STATUS
approved