login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121695
Number of odd-length first columns in all deco polyominoes of height n. A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.
1
1, 1, 3, 15, 57, 423, 2457, 22743, 178857, 1998423, 19774377, 259643223, 3093367977, 46722798423, 650703531177, 11118365780823, 177186743211177, 3379687537748823, 60644049519531177, 1277452054977620823
OFFSET
1,3
COMMENTS
a(n)+A121696(n)=n!
REFERENCES
E. Barcucci, S. Brunetti and F. Del Ristoro, Succession rules and deco polyominoes, Theoret. Informatics Appl., 34, 2000, 1-14.
E. Barcucci, A. Del Lungo and R. Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29- 42.
FORMULA
a(n)=a(n-2)+(n-2)!(n*floor(n/2)-1) for n>=3; a(1)=a(2)=1.
Conjecture D-finite with recurrence a(n) +a(n-1) -n*(n-2)*a(n-2) -(2*n-3)*(n-2)*a(n-3) -(n-2)*(n-3)*a(n-4)=0. - R. J. Mathar, Jul 22 2022
MAPLE
a[1]:=1: a[2]:=1: for n from 3 to 23 do a[n]:=a[n-2]+(n-2)!*(n*floor(n/2)-1) od: seq(a[n], n=1..23);
CROSSREFS
Cf. A121696.
Sequence in context: A218804 A125673 A123007 * A343994 A017949 A263173
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Aug 17 2006
STATUS
approved