login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A121693 Number of deco polyominoes of height n and vertical height 3 (i.e., having 3 rows). 1
0, 0, 1, 12, 57, 216, 741, 2412, 7617, 23616, 72381, 220212, 666777, 2012616, 6062421, 18236412, 54807537, 164619216, 494250861, 1483539012, 4452189897, 13359715416, 40085437701, 120268896012, 360831853857, 1082545893216 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.

LINKS

Table of n, a(n) for n=1..26.

E. Barcucci, S. Brunetti and F. Del Ristoro, Succession rules and deco polyominoes, Theoret. Informatics Appl., 34, 2000, 1-14.

E. Barcucci, A. Del Lungo and R. Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.

FORMULA

a(n) = A121692(n,3).

a(n) = 23*3^(n-3)/2 + 3/2 - 3*2^(n-1) for n >= 3.

Recurrence relation: a(n) = 3(a(n-1) + 2^(n-2) - 1) for n >= 4, a(1) = a(2) = 0, a(3) = 1.

G.f. = x^3*(1+6x-4x^2)/((1-x)(1-2x)(1-3x)).

MAPLE

a[1]:=0: a[2]:=0: a[3]:=1: for n from 4 to 30 do a[n]:=3*(a[n-1]+2^(n-2)-1) od: seq(a[n], n=1..30);

CROSSREFS

Cf. A121692.

Sequence in context: A071270 A051877 A212065 * A190297 A072259 A272233

Adjacent sequences:  A121690 A121691 A121692 * A121694 A121695 A121696

KEYWORD

nonn

AUTHOR

Emeric Deutsch, Aug 17 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 3 21:19 EDT 2021. Contains 346441 sequences. (Running on oeis4.)