login
A121693
Number of deco polyominoes of height n and vertical height 3 (i.e., having 3 rows).
1
0, 0, 1, 12, 57, 216, 741, 2412, 7617, 23616, 72381, 220212, 666777, 2012616, 6062421, 18236412, 54807537, 164619216, 494250861, 1483539012, 4452189897, 13359715416, 40085437701, 120268896012, 360831853857, 1082545893216
OFFSET
1,4
COMMENTS
A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.
LINKS
E. Barcucci, S. Brunetti and F. Del Ristoro, Succession rules and deco polyominoes, Theoret. Informatics Appl., 34, 2000, 1-14.
E. Barcucci, A. Del Lungo and R. Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.
FORMULA
a(n) = A121692(n,3).
a(n) = 23*3^(n-3)/2 + 3/2 - 3*2^(n-1) for n >= 3.
Recurrence relation: a(n) = 3(a(n-1) + 2^(n-2) - 1) for n >= 4, a(1) = a(2) = 0, a(3) = 1.
G.f. = x^3*(1+6x-4x^2)/((1-x)(1-2x)(1-3x)).
MAPLE
a[1]:=0: a[2]:=0: a[3]:=1: for n from 4 to 30 do a[n]:=3*(a[n-1]+2^(n-2)-1) od: seq(a[n], n=1..30);
CROSSREFS
Cf. A121692.
Sequence in context: A071270 A051877 A212065 * A190297 A072259 A272233
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Aug 17 2006
STATUS
approved