OFFSET
1,4
COMMENTS
A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.
LINKS
E. Barcucci, S. Brunetti and F. Del Ristoro, Succession rules and deco polyominoes, Theoret. Informatics Appl., 34, 2000, 1-14.
E. Barcucci, A. Del Lungo and R. Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.
Index entries for linear recurrences with constant coefficients, signature (6,-11,6).
FORMULA
a(n) = A121692(n,3).
a(n) = 23*3^(n-3)/2 + 3/2 - 3*2^(n-1) for n >= 3.
Recurrence relation: a(n) = 3(a(n-1) + 2^(n-2) - 1) for n >= 4, a(1) = a(2) = 0, a(3) = 1.
G.f. = x^3*(1+6x-4x^2)/((1-x)(1-2x)(1-3x)).
MAPLE
a[1]:=0: a[2]:=0: a[3]:=1: for n from 4 to 30 do a[n]:=3*(a[n-1]+2^(n-2)-1) od: seq(a[n], n=1..30);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Aug 17 2006
STATUS
approved