OFFSET
0,1
COMMENTS
a(n) mod 10 = period 20: repeat [2, 3, 4, 9, 8, 9, 0, 5, 4, 5, 6, 1, 0, 1, 2, 7, 6, 7, 8, 3] = disordered [0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9].
LINKS
Index entries for linear recurrences with constant coefficients, signature (3,-1,-3,2).
FORMULA
a(n+1) - 2*(n) = -1, -2, 1, 0, 3, 2, 5, 4, ..., n >= 0.
a(n+1) - a(n) = A097074(n).
a(n+2) - 2*a(n+1) + a(n) = A097073(n+1).
From Colin Barker, Dec 26 2018: (Start)
G.f.: (2 - 3*x - 3*x^2 + 6*x^3) / ((1 - x)^2*(1 + x)*(1 - 2*x)).
a(n) = 3*a(n-1) - a(n-2) - 3*a(n-3) + 2*a(n-4) for n > 3.
(End)
PROG
(PARI) Vec((2 - 3*x - 3*x^2 + 6*x^3) / ((1 - x)^2*(1 + x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, Dec 26 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Dec 26 2018
STATUS
approved