login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322785
Number of uniform multiset partitions of uniform multisets of size n whose union is an initial interval of positive integers.
6
1, 1, 4, 4, 12, 4, 48, 4, 183, 297, 1186, 4, 33950, 4, 139527, 1529608, 4726356, 4, 229255536, 4, 3705777010, 36279746314, 13764663019, 4, 14096735197959, 5194673049514, 7907992957755, 2977586461058927, 13426396910491001, 4, 1350012288268171854, 4, 59487352224070807287
OFFSET
0,3
COMMENTS
A multiset is uniform if all multiplicities are equal. A multiset partition is uniform if all parts have the same size.
LINKS
FORMULA
a(n) = 4 <=> n in { A000040 }. - Alois P. Heinz, Feb 03 2022
EXAMPLE
The a(1) = 1 though a(6) = 48 multiset partitions:
{1} {11} {111} {1111} {11111} {111111}
{12} {123} {1122} {12345} {111222}
{1}{1} {1}{1}{1} {1234} {1}{1}{1}{1}{1} {112233}
{1}{2} {1}{2}{3} {11}{11} {1}{2}{3}{4}{5} {123456}
{11}{22} {111}{111}
{12}{12} {111}{222}
{12}{34} {112}{122}
{13}{24} {112}{233}
{14}{23} {113}{223}
{1}{1}{1}{1} {122}{133}
{1}{1}{2}{2} {123}{123}
{1}{2}{3}{4} {123}{456}
{124}{356}
{125}{346}
{126}{345}
{134}{256}
{135}{246}
{136}{245}
{145}{236}
{146}{235}
{156}{234}
{11}{11}{11}
{11}{12}{22}
{11}{22}{33}
{11}{23}{23}
{12}{12}{12}
{12}{12}{33}
{12}{13}{23}
{12}{34}{56}
{12}{35}{46}
{12}{36}{45}
{13}{13}{22}
{13}{24}{56}
{13}{25}{46}
{13}{26}{45}
{14}{23}{56}
{14}{25}{36}
{14}{26}{35}
{15}{23}{46}
{15}{24}{36}
{15}{26}{34}
{16}{23}{45}
{16}{24}{35}
{16}{25}{34}
{1}{1}{1}{1}{1}{1}
{1}{1}{1}{2}{2}{2}
{1}{1}{2}{2}{3}{3}
{1}{2}{3}{4}{5}{6}
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
Table[Sum[Length[Select[mps[m], SameQ@@Length/@#&]], {m, Table[Join@@Table[Range[n/d], {d}], {d, Divisors[n]}]}], {n, 8}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 26 2018
EXTENSIONS
More terms from Alois P. Heinz, Jan 30 2019
Terms a(14) and beyond from Andrew Howroyd, Feb 03 2022
STATUS
approved