login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317584
Number of multiset partitions of strongly normal multisets of size n such that all blocks have the same size.
4
1, 4, 6, 19, 14, 113, 30, 584, 1150, 4023, 112, 119866, 202, 432061, 5442765, 16646712, 594, 738090160, 980, 13160013662, 113864783987, 39049423043, 2510, 44452496723053, 19373518220009, 21970704599961, 8858890258339122, 43233899006497146, 9130, 4019875470540832643
OFFSET
1,2
COMMENTS
A multiset is strongly normal if it spans an initial interval of positive integers with weakly decreasing multiplicities.
FORMULA
a(p) = 2*A000041(p) for prime p. - Andrew Howroyd, Jan 01 2021
EXAMPLE
The a(4) = 19 multiset partitions:
{{1,1,1,1}}, {{1,1},{1,1}}, {{1},{1},{1},{1}},
{{1,1,1,2}}, {{1,1},{1,2}}, {{1},{1},{1},{2}},
{{1,1,2,2}}, {{1,1},{2,2}}, {{1,2},{1,2}}, {{1},{1},{2},{2}},
{{1,1,2,3}}, {{1,1},{2,3}}, {{1,2},{1,3}}, {{1},{1},{2},{3}},
{{1,2,3,4}}, {{1,2},{3,4}}, {{1,3},{2,4}}, {{1,4},{2,3}}, {{1},{2},{3},{4}}.
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
strnorm[n_]:=Flatten[MapIndexed[Table[#2, {#1}]&, #]]&/@IntegerPartitions[n];
Table[Length[Select[Join@@mps/@strnorm[n], SameQ@@Length/@#&]], {n, 6}]
PROG
(PARI) \\ See links in A339645 for combinatorial species functions.
cycleIndex(n)={sum(n=1, n, x^n*sumdiv(n, d, sApplyCI(symGroupCycleIndex(d), d, symGroupCycleIndex(n/d), n/d))) + O(x*x^n)}
StronglyNormalLabelingsSeq(cycleIndex(15)) \\ Andrew Howroyd, Jan 01 2021
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 01 2018
EXTENSIONS
Terms a(9) and beyond from Andrew Howroyd, Jan 01 2021
STATUS
approved