login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of multiset partitions of strongly normal multisets of size n such that all blocks have the same size.
4

%I #8 Jan 01 2021 14:21:57

%S 1,4,6,19,14,113,30,584,1150,4023,112,119866,202,432061,5442765,

%T 16646712,594,738090160,980,13160013662,113864783987,39049423043,2510,

%U 44452496723053,19373518220009,21970704599961,8858890258339122,43233899006497146,9130,4019875470540832643

%N Number of multiset partitions of strongly normal multisets of size n such that all blocks have the same size.

%C A multiset is strongly normal if it spans an initial interval of positive integers with weakly decreasing multiplicities.

%F a(p) = 2*A000041(p) for prime p. - _Andrew Howroyd_, Jan 01 2021

%e The a(4) = 19 multiset partitions:

%e {{1,1,1,1}}, {{1,1},{1,1}}, {{1},{1},{1},{1}},

%e {{1,1,1,2}}, {{1,1},{1,2}}, {{1},{1},{1},{2}},

%e {{1,1,2,2}}, {{1,1},{2,2}}, {{1,2},{1,2}}, {{1},{1},{2},{2}},

%e {{1,1,2,3}}, {{1,1},{2,3}}, {{1,2},{1,3}}, {{1},{1},{2},{3}},

%e {{1,2,3,4}}, {{1,2},{3,4}}, {{1,3},{2,4}}, {{1,4},{2,3}}, {{1},{2},{3},{4}}.

%t sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];

%t mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];

%t strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];

%t Table[Length[Select[Join@@mps/@strnorm[n],SameQ@@Length/@#&]],{n,6}]

%o (PARI) \\ See links in A339645 for combinatorial species functions.

%o cycleIndex(n)={sum(n=1, n, x^n*sumdiv(n, d, sApplyCI(symGroupCycleIndex(d), d, symGroupCycleIndex(n/d), n/d))) + O(x*x^n)}

%o StronglyNormalLabelingsSeq(cycleIndex(15)) \\ _Andrew Howroyd_, Jan 01 2021

%Y Cf. A000005, A000041, A007716, A038041, A255906, A298422, A306017, A306018, A306019, A306020, A306021, A317583.

%K nonn

%O 1,2

%A _Gus Wiseman_, Aug 01 2018

%E Terms a(9) and beyond from _Andrew Howroyd_, Jan 01 2021