login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A196570 LAN party numbers. 1
0, 4, 6, 18, 48, 118, 314, 806, 2082, 5402, 13946, 36102, 93378, 241518, 624810, 1616142, 4180594, 10814158, 27973298, 72359966, 187176434, 484177358, 1252442706, 3239746862, 8380393330, 21677923822, 56075218194, 145052181998, 375212720786, 970578896942 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(n) gives the number of solutions to the following problem: n couples, each consisting of 1 boy and 1 girl, are at a LAN party with a 2 x n table, where pairs of index cards labeled "B" and "G" have been laid out on either adjacent or opposite seats. Each boy takes a seat at a chair marked "B" and his date takes the corresponding "G" chair either next to him or across from him. Additionally, each boy finds that he is either across from or next to at least one other boy. How many ways are there for the host to arrange the pairs of cards that result in such an assignment?

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

Jonathan Daniel Kilgallin, LAN party numbers

Index entries for linear recurrences with constant coefficients, signature (1,4,2,-4,-2,2).

FORMULA

m(1) = 0; m(2) = 2; m(3) = 4; m(4) = 10.

x(1) = 2; x(2) = 0; x(3) = 6; x(4) = 12.

a(1) = 0; a(2) = 4; a(3) = 6; a(4) = 18.

m(n) = 2*a(n-3) + m(n-1) + x(n-1).

x(n) = 2*a(n-3) + 2*a(n-4) + m(n-1) + m(n-2) + x(n-2) + 2*x(n-3).

a(n) = 2*a(i-2) + x(n-2) + m(n).

G.f.: -2*x^2*(2+x-2*x^2-x^3+x^4)/ ((1+x)*(2*x^5-4*x^4+2*x^2+2*x-1)). - Alexander R. Povolotsky, Oct 05 2011

EXAMPLE

for n = 3 the a(3)=6 solutions are

G-B G

    |

G-B B

+++++

G-B B

    |

G-B G

+++++

G G G

| | |

B B B

+++++

G B-G

|

B B-G

+++++

B B-G

|

G B-G

+++++

B B B

| | |

G G G

MATHEMATICA

CoefficientList[Series[-2*x^2*(2 + x - 2*x^2 - x^3 + x^4)/((1 + x)*(2*x^5 - 4*x^4 + 2*x^2 + 2*x - 1)), {x, 0, 50}], x] (* G. C. Greubel, Feb 22 2017 *)

PROG

(C#) public static long a(int n)

        {

            long[] M = new long[n+1];

            long[] X = new long[n+1];

            long[] S = new long[n+1];

            M[1] = 0; M[2] = 2; M[3] = 4; M[4] = 10;

            X[1] = 2; X[2] = 0; X[3] = 6; X[4] = 12;

            S[1] = 0; S[2] = 4; S[3] = 6; S[4] = 18;

            for (int i = 5; i <= n; i++)

            {

                M[i] = 2 * S[i-3] + M[i-1] + X[i-1];

                X[i] = 2 * S[i - 3] + 2 * S[i - 4] + M[i - 1] + M[i - 2] + X[i - 2] + 2 * X[i - 3];

                S[i] = 2 * S[i - 2] + X[i - 2] + M[i];

            }

            return S[n];

        }

(PARI) x='x+O('x^50); Vec(-2*x^2*(2 + x - 2*x^2 - x^3 + x^4)/((1 + x)*(2*x^5 - 4*x^4 + 2*x^2 + 2*x - 1)) \\ G. C. Greubel, Feb 22 2017

CROSSREFS

Sequence in context: A218065 A005959 A057393 * A274992 A317584 A012928

Adjacent sequences:  A196567 A196568 A196569 * A196571 A196572 A196573

KEYWORD

nonn,easy

AUTHOR

Jonathan Daniel Kilgallin, Oct 04 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 25 03:03 EDT 2019. Contains 326318 sequences. (Running on oeis4.)