login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317581
a(1) = 1; a(n > 1) = 1 + Sum_{d|n, d<n} mu(n/d) a(d).
2
1, 0, 0, 1, 0, 2, 0, 0, 1, 2, 0, -2, 0, 2, 2, 1, 0, -2, 0, -2, 2, 2, 0, 4, 1, 2, 0, -2, 0, -6, 0, 0, 2, 2, 2, 7, 0, 2, 2, 4, 0, -6, 0, -2, -2, 2, 0, -4, 1, -2, 2, -2, 0, 4, 2, 4, 2, 2, 0, 16, 0, 2, -2, 1, 2, -6, 0, -2, 2, -6, 0, -12, 0, 2, -2, -2, 2, -6, 0, -4
OFFSET
1,6
COMMENTS
If p is prime, a(p^k) = 0 if k is odd, 1 if k is even. - Robert Israel, Aug 01 2018
LINKS
MAPLE
f:= n -> 1 + add(numtheory:-mobius(n/d)*procname(d), d=numtheory:-divisors(n) minus {n}):
f(1):= 1:
map(f, [$1..100]); # Robert Israel, Aug 01 2018
MATHEMATICA
a[n_]:=1+Sum[MoebiusMu[n/d]*a[d], {d, Most[Divisors[n]]}];
Array[a, 100]
PROG
(Python)
from sympy import mobius, divisors
def A317581(n): return 1 + (0 if n == 1 else sum(mobius(n//d)*A317581(d) for d in divisors(n, generator=True) if d < n)) # Chai Wah Wu, Jan 14 2022
CROSSREFS
KEYWORD
sign,eigen
AUTHOR
Gus Wiseman, Jul 31 2018
STATUS
approved