login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1) = 1; a(n > 1) = 1 + Sum_{d|n, d<n} mu(n/d) a(d).
2

%I #13 Jan 14 2022 16:03:41

%S 1,0,0,1,0,2,0,0,1,2,0,-2,0,2,2,1,0,-2,0,-2,2,2,0,4,1,2,0,-2,0,-6,0,0,

%T 2,2,2,7,0,2,2,4,0,-6,0,-2,-2,2,0,-4,1,-2,2,-2,0,4,2,4,2,2,0,16,0,2,

%U -2,1,2,-6,0,-2,2,-6,0,-12,0,2,-2,-2,2,-6,0,-4

%N a(1) = 1; a(n > 1) = 1 + Sum_{d|n, d<n} mu(n/d) a(d).

%C If p is prime, a(p^k) = 0 if k is odd, 1 if k is even. - _Robert Israel_, Aug 01 2018

%H Seiichi Manyama, <a href="/A317581/b317581.txt">Table of n, a(n) for n = 1..10000</a>

%p f:= n -> 1 + add(numtheory:-mobius(n/d)*procname(d),d=numtheory:-divisors(n) minus {n}):

%p f(1):= 1:

%p map(f, [$1..100]); # _Robert Israel_, Aug 01 2018

%t a[n_]:=1+Sum[MoebiusMu[n/d]*a[d],{d,Most[Divisors[n]]}];

%t Array[a,100]

%o (Python)

%o from sympy import mobius, divisors

%o def A317581(n): return 1 + (0 if n == 1 else sum(mobius(n//d)*A317581(d) for d in divisors(n,generator=True) if d < n)) # _Chai Wah Wu_, Jan 14 2022

%Y Cf. A001678, A002033, A007554, A038046, A067824.

%K sign,eigen

%O 1,6

%A _Gus Wiseman_, Jul 31 2018