login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317586
Number of circular binary words of length n having the maximum possible number of distinct blocks of length floor(log_2 n) and floor(log_2 n)+1.
3
2, 1, 2, 1, 2, 3, 4, 2, 4, 3, 6, 13, 12, 20, 32, 16, 32, 36, 68, 141, 242, 407, 600, 898, 1440, 1812, 2000, 2480, 2176, 2816, 4096, 2048, 4096, 3840, 7040, 13744, 28272, 54196, 88608, 160082, 295624, 553395, 940878, 1457197, 2234864, 3302752, 4975168, 7459376
OFFSET
1,1
COMMENTS
A circular binary word (a.k.a. "necklace") can be viewed as a representative of the equivalence class under cyclic shift.
The words counted by this sequence have 2^i distinct blocks of length i = floor(log_2 n) and n distinct blocks of length i+1.
This sequence counts a certain natural generalization of de Bruijn words, which are cyclic words of length 2^n containing all n-bit blocks as subwords.
LINKS
D. Gabric, S. Holub, and J. Shallit, Generalized de Bruijn words and the state complexity of conjugate sets, arXiv:1903.05442 [cs.FL], March 13 2019.
EXAMPLE
For n = 6 the 3 possibilities are {000111, 001011, 001101}. Each contains all 4 blocks of length 2, and 6 distinct blocks of length 3 (when considered circularly).
CROSSREFS
Cf. A016031, which gives the value of this sequence evaluated at powers of 2.
Cf. A318687.
Sequence in context: A087855 A083409 A344779 * A303780 A234022 A261273
KEYWORD
nonn
AUTHOR
Jeffrey Shallit, Aug 01 2018
EXTENSIONS
Terms a(33)-a(48) provided by Štěpán Holub
STATUS
approved