login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322787
Irregular triangle read by rows where if d|n then T(n,d) is the number of non-isomorphic multiset partitions of a multiset with d copies of each integer from 1 to n/d.
3
1, 2, 2, 3, 3, 5, 7, 5, 7, 7, 11, 23, 21, 11, 15, 15, 22, 79, 66, 22, 30, 162, 30, 42, 274, 192, 42, 56, 56, 77, 1003, 1636, 1338, 565, 77, 101, 101, 135, 3763, 1579, 135, 176, 19977, 10585, 176, 231, 14723, 43686, 4348, 231, 297, 297, 385, 59663, 298416, 82694, 11582, 385
OFFSET
1,2
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..207 (rows 1..50)
EXAMPLE
Triangle begins:
1
2 2
3 3
5 7 5
7 7
11 23 21 11
15 15
22 79 66 22
30 162 30
42 274 192 42
Non-isomorphic representatives of the multiset partitions counted under row 6:
{123456} {112233} {111222} {111111}
{1}{23456} {1}{12233} {1}{11222} {1}{11111}
{12}{3456} {11}{2233} {11}{1222} {11}{1111}
{123}{456} {112}{233} {111}{222} {111}{111}
{1}{2}{3456} {12}{1233} {112}{122} {1}{1}{1111}
{1}{23}{456} {123}{123} {12}{1122} {1}{11}{111}
{12}{34}{56} {1}{1}{2233} {1}{1}{1222} {11}{11}{11}
{1}{2}{3}{456} {1}{12}{233} {1}{11}{222} {1}{1}{1}{111}
{1}{2}{34}{56} {11}{22}{33} {11}{12}{22} {1}{1}{11}{11}
{1}{2}{3}{4}{56} {11}{23}{23} {1}{12}{122} {1}{1}{1}{1}{11}
{1}{2}{3}{4}{5}{6} {1}{2}{1233} {1}{2}{1122} {1}{1}{1}{1}{1}{1}
{12}{13}{23} {12}{12}{12}
{1}{23}{123} {2}{11}{122}
{2}{11}{233} {1}{1}{1}{222}
{1}{1}{2}{233} {1}{1}{12}{22}
{1}{1}{22}{33} {1}{1}{2}{122}
{1}{1}{23}{23} {1}{2}{11}{22}
{1}{2}{12}{33} {1}{2}{12}{12}
{1}{2}{13}{23} {1}{1}{1}{2}{22}
{1}{2}{3}{123} {1}{1}{2}{2}{12}
{1}{1}{2}{2}{33} {1}{1}{1}{2}{2}{2}
{1}{1}{2}{3}{23}
{1}{1}{2}{2}{3}{3}
PROG
(PARI) \\ See A318951 for RowSumMats
row(n)={my(d=divisors(n)); vector(#d, i, RowSumMats(n/d[i], n, d[i]))}
{ for(n=1, 15, print(row(n))) } \\ Andrew Howroyd, Feb 02 2022
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, Dec 26 2018
EXTENSIONS
Terms a(28) and beyond from Andrew Howroyd, Feb 02 2022
STATUS
approved