login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A192928 The Gi1 and Gi2 sums of Losanitsch’s triangle A034851 6
1, 1, 1, 1, 2, 2, 3, 3, 5, 6, 9, 11, 16, 20, 29, 37, 53, 69, 98, 130, 183, 245, 343, 463, 646, 877, 1220, 1664, 2310, 3161, 4381, 6009, 8319, 11430, 15811, 21751, 30070, 41405, 57216, 78836, 108906, 150130, 207346 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

The Gi1 and Gi2 sums, see A180662 for their definitions, of Losanitsch's triangle A034851 equal this sequence.

From Johannes W. Meijer, Aug 26 2013: (Start)

The a(n) are also the Ca1 and Ca2 sums of McGarvey’s triangle A102541.

Furthermore they are the Kn11 and Kn12 sums of triangle A228570.

And finally the terms of this sequence are the row sums of triangle A228572. (End)

LINKS

Table of n, a(n) for n=0..42.

R. J. Mathar, Paving rectangular regions with rectangular tiles,...., arXiv:1311.6135 [math.CO], Table 25.

Index entries for linear recurrences with constant coefficients, signature (1,1,-1,1,0,-1,0,1,-1,0,0,-1).

FORMULA

G.f.: (-1/2)*(1/(x^4+x-1) + (1+x+x^4)/(x^8+x^2-1))= -(1+x)*(x^7-x^6+x^5+x-1) / ( (x^4+x-1)*(x^8+x^2-1) ).

a(n) = (A003269(n+1)+x(n)+x(n-1)+x(n-4))/2 with x(2*n) = A003269(n+1) and x(2*n+1) = 0.

From Johannes W. Meijer, Aug 26 2013: (Start)

a(n) = sum(A228572(n, k), k=0..n)

a(n) = sum(A228570(n-k, k), k=0..floor(n/2))

a(n) = sum(A102541(n-2*k, k), k=0..floor(n/3))

a(n) = sum(A034851(n-3*k, k), k=0..floor(n/4)) (End)

MAPLE

A192928 := proc(n): (A003269(n+1)+x(n)+x(n-1)+x(n-4))/2 end: A003269 := proc(n): sum(binomial(n-1-3*j, j), j=0..(n-1)/3) end: x:=proc(n): if type(n, even) then A003269(n/2+1) else 0 fi: end: seq(A192928(n), n=0..42);

MATHEMATICA

LinearRecurrence[{1, 1, -1, 1, 0, -1, 0, 1, -1, 0, 0, -1}, {1, 1, 1, 1, 2, 2, 3, 3, 5, 6, 9, 11}, 43] (* Jean-François Alcover, Nov 16 2017 *)

CROSSREFS

Cf. A003269, A034851, A102541, A180662, A228570, A228572.

Sequence in context: A274158 A020999 A079955 * A136417 A130791 A133277

Adjacent sequences:  A192925 A192926 A192927 * A192929 A192930 A192931

KEYWORD

nonn,easy

AUTHOR

Johannes W. Meijer, Jul 14 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 20 12:12 EST 2018. Contains 299387 sequences. (Running on oeis4.)