This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A156684 The number of primitive Pythagorean triples A^2+B^2=C^2 with 0 < A < B < C and gcd(A,B)=1, and both legs less than n. 0
 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,13 COMMENTS For large N, Benito and Varona have shown that a(N)~2/pi^2 Log(1+sqrt(2)).N +O(sqrt(N)). However, the approximations to a(N)/N are considerably more accurate than the error term suggests, and it certainly appears that the density of the primitive triples with both legs less than N tends towards 2/pi^2 Log(1+sqrt(2))=0.1786... as N becomes large. REFERENCES Benito, Manuel and Varona, Juan; Pythagorean triangles with legs less than n, Journal of Computational and Applied Mathematics 143, (2002), pp. 117-126. LINKS EXAMPLE There are two primitive triples with both legs less than 14, specifically (3,4,5) and (5,12,13). Hence a(14)=2. MATHEMATICA PrimitivePythagoreanTriplets[n_]:=Module[{t={{3, 4, 5}}, i=4, j=5}, While[i

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 17:42 EST 2019. Contains 329768 sequences. (Running on oeis4.)