OFFSET
0,4
REFERENCES
E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 60.
J. H. Conway, On Numbers and Games, Academic Press, p. 52.
LINKS
Reinhard Zumkeller, Rows n = 0..127 of triangle, flattened first 50 rows by R. J. Mathar
EXAMPLE
{0},
{1,0},
{2,3,0},
{3,2,1,0}, ...
MAPLE
nimsum := proc(a, b) local t1, t2, t3, t4, l; t1 := convert(a+2^20, base, 2); t2 := convert(b+2^20, base, 2); t3 := evalm(t1+t2); map(x->x mod 2, t3); t4 := convert(evalm(%), list); l := convert(t4, base, 2, 10); sum(l[k]*10^(k-1), k=1..nops(l)); end; # memo: adjust 2^20 to be much bigger than a and b
AT := array(0..N, 0..N); for a from 0 to N do for b from a to N do AT[a, b] := nimsum(a, b); AT[b, a] := AT[a, b]; od: od:
# Alternative:
A051933 := (n, k) -> Bits:-Xor(n, k):
seq(seq(A051933(n, k), k=0..n), n=0..12); # Peter Luschny, Sep 23 2019
MATHEMATICA
Flatten[Table[BitXor[m, n], {m, 0, 12}, {n, 0, m}]] (* Jean-François Alcover, Apr 29 2011 *)
PROG
(Haskell)
import Data.Bits (xor)
a051933 n k = n `xor` k :: Int
a051933_row n = map (a051933 n) [0..n]
a051933_tabl = map a051933_row [0..]
-- Reinhard Zumkeller, Aug 02 2014, Aug 13 2013
(Julia)
using IntegerSequences
A051933Row(n) = [Bits("XOR", n, k) for k in 0:n]
for n in 0:10 println(A051933Row(n)) end # Peter Luschny, Sep 25 2021
CROSSREFS
AUTHOR
N. J. A. Sloane, Dec 20 1999
EXTENSIONS
More terms from Michael Lugo (mlugo(AT)thelabelguy.com), Dec 22 1999
STATUS
approved