login
A051932
Number of independent sets of nodes in graph K_7 X C_n (n > 2).
2
8, 1, 57, 358, 2605, 18551, 132504, 946037, 6754805, 48229630, 344362257, 2458765387, 17555720008, 125348805401, 894997357857, 6390330310358, 45627309530405, 325781497023151, 2326097788692504, 16608466017870637, 118585359913787005, 846705985414379630
OFFSET
0,1
FORMULA
a(n) = 6*a(n-1) + 8*a(n-2) + a(n-3).
G.f.: (13*x^2+47*x-8)/(x^3+8*x^2+6*x-1). - Harvey P. Dale, Sep 11 2011
MATHEMATICA
LinearRecurrence[{6, 8, 1}, {8, 1, 57}, 20] (* Harvey P. Dale, Sep 11 2011 *)
PROG
(PARI) Vec((8 - 47*x - 13*x^2) / ((1 + x)*(1 - 7*x - x^2)) + O(x^30)) \\ Colin Barker, May 11 2017
CROSSREFS
Row 7 of A287376.
Sequence in context: A271060 A318576 A089276 * A347489 A038279 A075503
KEYWORD
easy,nonn
AUTHOR
Stephen G Penrice, Dec 19 1999
EXTENSIONS
More terms from James A. Sellers, Dec 20 1999
Corrected by T. D. Noe, Nov 07 2006
STATUS
approved