login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A038279 Triangle whose (i,j)-th entry is binomial(i,j)*8^(i-j)*1^j. 7
1, 8, 1, 64, 16, 1, 512, 192, 24, 1, 4096, 2048, 384, 32, 1, 32768, 20480, 5120, 640, 40, 1, 262144, 196608, 61440, 10240, 960, 48, 1, 2097152, 1835008, 688128, 143360, 17920, 1344, 56, 1, 16777216, 16777216, 7340032, 1835008, 286720 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

T(i,j) is the number of i-permutations of 9 objects a,b,c,d,e,f,g,h,i with repetition allowed, containing j a's. - Zerinvary Lajos, Dec 21 2007

Triangle of coefficients in expansion of (8 + x)^n, where n is a nonnegative integer. - Zagros Lalo, Jul 21 2018

REFERENCES

Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 44, 48

LINKS

Muniru A Asiru, Rows n=0..50 of triangle, flattened

B. N. Cyvin et al., Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, No. 34 (Oct 1996), pp. 109-121.

FORMULA

T(0,0) = 1; T(n,k) = 8 T(n-1,k) + T(n-1,k-1) for k = 0..n; T(n,k)=0 for n or k < 0. - Zagros Lalo, Jul 21 2018

EXAMPLE

1

8, 1

64, 16, 1

512, 192, 24, 1

4096, 2048, 384, 32, 1

32768, 20480, 5120, 640, 40, 1

262144, 196608, 61440, 10240, 960, 48, 1

2097152, 1835008, 688128, 143360, 17920, 1344, 56, 1

16777216, 16777216, 7340032, 1835008, 286720, 28672, 1792, 64, 1

MAPLE

for i from 0 to 8 do seq(binomial(i, j)*8^(i-j), j = 0 .. i) od; # Zerinvary Lajos, Dec 21 2007

MATHEMATICA

t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 8 t[n - 1, k] + t[n - 1, k - 1]]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Zagros Lalo, Jul 21 2018 *)

Table[CoefficientList[ Expand[(8 + x)^n], x], {n, 0, 8}] // Flatten  (* Zagros Lalo, Jul 22 2018 *)

Table[CoefficientList[Binomial[i, j] * 8^(i - j) * 1^j, x], {i, 0, 8}, {j, 0, i}] // Flatten (* Zagros Lalo, Jul 23 2018 *)

PROG

(GAP) Flat(List([0..8], i->List([0..i], j->Binomial(i, j)*8^(i-j)*1^j))); # Muniru A Asiru, Jul 21 2018

CROSSREFS

Cf. A317028

Sequence in context: A089276 A051932 A347489 * A075503 A260040 A051379

Adjacent sequences:  A038276 A038277 A038278 * A038280 A038281 A038282

KEYWORD

nonn,tabl,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 09:45 EST 2021. Contains 349543 sequences. (Running on oeis4.)