login
A380860
Triangle read by rows: T(n,m) (0<=m<=n) = number of positive n-digit numbers that have exactly m copies of a specific, previously selected positive base-10 digit among its digits.
1
1, 8, 1, 72, 17, 1, 648, 225, 26, 1, 5832, 2673, 459, 35, 1, 52488, 29889, 6804, 774, 44, 1, 472392, 321489, 91125, 13770, 1170, 53, 1, 4251528, 3365793, 1141614, 215055, 24300, 1647, 62, 1, 38263752, 34543665, 13640319, 3077109, 433755, 39123, 2205, 71, 1, 344373768, 349156737, 157306536, 41334300, 6980904, 785862, 58968, 2844, 80, 1
OFFSET
0,2
LINKS
Paolo Xausa, Table of n, a(n) for n = 0..11475 (rows 0..150 of triangle, flattened).
FORMULA
T(n,m) = floor(9^(n-m)*(binomial(n-1,m-1)+8/9*binomial(n-1,m))), considering binomial(k,-1)=0 for k>=0 and binomial(k,l)=0 for k>=0 with k<l.
EXAMPLE
Rows n=0..7 of the triangle are:
1;
8, 1;
72, 17, 1;
648, 225, 26, 1;
5832, 2673, 459, 35, 1;
52488, 29889, 6804, 774, 44, 1;
472392, 321489, 91125, 13770, 1170, 53, 1;
4251528, 3365793, 1141614, 215055, 24300, 1647, 62, 1;
...
MAPLE
seq(lprint(seq(floor(9^(n-m)*(binomial(n-1, m-1)+(8/9)*binomial(n-1, m))), m=0..n)), n=0..7);
MATHEMATICA
A380860[n_, m_] := Floor[9^(n-m)*(Binomial[n-1, m-1] + 8/9*Binomial[n-1, m])];
Table[A380860[n, m], {n, 0, 10}, {m, 0, n}] (* Paolo Xausa, Feb 07 2025 *)
CROSSREFS
Row sums give A052268 (for n>=1).
Columns k=0-1 give: A055275, A081044(n-1) (for n>=1).
Sequence in context: A038279 A075503 A260040 * A051379 A143499 A114152
KEYWORD
nonn,base,tabl,new
AUTHOR
Peter Starek, Feb 06 2025
STATUS
approved