login
A080099
Triangle T(n,k) = n AND k, 0<=k<=n, bitwise logical AND, read by rows.
11
0, 0, 1, 0, 0, 2, 0, 1, 2, 3, 0, 0, 0, 0, 4, 0, 1, 0, 1, 4, 5, 0, 0, 2, 2, 4, 4, 6, 0, 1, 2, 3, 4, 5, 6, 7, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 1, 0, 1, 0, 1, 0, 1, 8, 9, 0, 0, 2, 2, 0, 0, 2, 2, 8, 8, 10, 0, 1, 2, 3, 0, 1, 2, 3, 8, 9, 10, 11, 0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 0, 1, 0, 1, 4, 5, 4, 5, 8, 9, 8, 9
OFFSET
0,6
COMMENTS
A080100(n) = number of numbers k such that n AND k = 0 in n-th row of the triangular array.
LINKS
Eric Weisstein's World of Mathematics, AND.
EXAMPLE
Triangle starts:
0
0 1
0 0 2
0 1 2 3
0 0 0 0 4
0 1 0 1 4 5
0 0 2 2 4 4 6
0 1 2 3 4 5 6 7
...
MATHEMATICA
Column[Table[BitAnd[n, k], {n, 0, 15}, {k, 0, n}], Center] (* Alonso del Arte, Jun 19 2012 *)
PROG
(Haskell)
import Data.Bits ((.&.))
a080099 n k = n .&. k :: Int
a080099_row n = map (a080099 n) [0..n]
a080099_tabl = map a080099_row [0..]
-- Reinhard Zumkeller, Aug 03 2014, Jul 05 2012
(PARI) T(n, k)=bitand(n, k) \\ Charles R Greathouse IV, Jan 26 2013
(Python)
def T(n, k): return n & k
print([T(n, k) for n in range(14) for k in range(n+1)]) # Michael S. Branicky, Dec 16 2021
CROSSREFS
Cf. A080100, A222423 (row sums), A004198 (array).
Other triangles: A080098 (OR), A051933 (XOR), A265705 (IMPL), A102037 (CNIMPL).
Sequence in context: A321198 A128584 A327853 * A268040 A127711 A336937
KEYWORD
nonn,easy,tabl,hear,look
AUTHOR
Reinhard Zumkeller, Jan 28 2003
STATUS
approved