The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002156 Numbers k for which rank of the elliptic curve y^2 = x^3 - k*x is 0. (Formerly M2345 N0926) 6
 1, 3, 4, 8, 9, 11, 13, 16, 18, 19, 24, 27, 28, 29, 33, 35, 40, 43, 44, 48, 51, 59, 61, 63, 64, 67, 68, 75, 81, 83, 88, 91, 92, 93, 98, 100, 104, 107, 108, 109, 113, 115, 120, 121, 123, 125, 126, 128, 129, 131, 139, 144, 152, 153, 157, 163, 164, 168, 172, 173, 176, 177, 179, 180, 187, 189, 193, 195, 198, 200 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1730 B. J. Birch and H. P. F. Swinnerton-Dyer, Notes on elliptic curves, I, J. Reine Angew. Math., 212 (1963), 7-25. B. J. Birch and H. P. F. Swinnerton-Dyer, Notes on elliptic curves, I, J. Reine Angew. Math., 212 (1963), 7-25 (open access). PROG (MAGMA) for k in[1..200] do if Rank(EllipticCurve([0, 0, 0, -k, 0])) eq 0 then print k; end if; end for; // Vaclav Kotesovec, Jul 07 2019 (PARI) for(k=1, 200, if(ellanalyticrank(ellinit([0, 0, 0, -k, 0]))[1]==0, print1(k", "))) \\ Seiichi Manyama, Jul 07 2019 CROSSREFS Cf. A060952. Sequence in context: A006520 A054204 A050003 * A285033 A073258 A170954 Adjacent sequences:  A002153 A002154 A002155 * A002157 A002158 A002159 KEYWORD nonn AUTHOR EXTENSIONS Corrected and extended by Vaclav Kotesovec, Jul 07 2019 New name by Vaclav Kotesovec, Jul 07 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 7 15:48 EDT 2021. Contains 343651 sequences. (Running on oeis4.)