login
A091311
Partial sums of 3^A007814(n).
1
0, 1, 4, 5, 14, 15, 18, 19, 46, 47, 50, 51, 60, 61, 64, 65, 146, 147, 150, 151, 160, 161, 164, 165, 192, 193, 196, 197, 206, 207, 210, 211, 454, 455, 458, 459, 468, 469, 472, 473, 500, 501, 504, 505, 514, 515, 518, 519, 600, 601, 604, 605, 614, 615, 618, 619
OFFSET
0,3
FORMULA
Recurrence: a(2n) = 3a(n) + n, a(2n+1) = 3a(n) + n + 1.
G.f.: 1/(1-x) * sum(k>=0, 3^k*t/(1-t^2), t=x^2^k).
PROG
(PARI) a(n)=sum(k=1, n, 3^valuation(n, 2))
(PARI) a(n)=if(n<1, 0, if(n%2==0, 3*a(n/2)+n/2, 3*a((n-1)/2)+(n+1)/2))
(Python)
def A091311(n): return (int(bin(n)[2:], 3)<<1)-n # Chai Wah Wu, Jul 07 2022
CROSSREFS
First differences are A061393(n)-1.
Equals 2*A005836(n) - n.
Sequence in context: A239615 A195747 A238315 * A008540 A290810 A000867
KEYWORD
nonn,easy
AUTHOR
Ralf Stephan, Feb 24 2004
STATUS
approved