login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A290810
Numbers k such that 6k-1, 12k-1 and 18k-1 are all primes.
2
1, 4, 5, 14, 15, 29, 39, 40, 49, 70, 110, 159, 169, 204, 235, 260, 264, 315, 334, 355, 390, 425, 449, 490, 560, 565, 599, 634, 725, 729, 735, 820, 824, 889, 1019, 1029, 1349, 1379, 1419, 1510, 1580, 1590, 1694, 1719, 1765, 1925, 1930, 1950, 1985, 2044, 2150
OFFSET
1,2
COMMENTS
If k is in the sequence then (6k-1)(12k-1)(18k-1) = 36k * (36k^2 - 11k + 1) - 1 is a Lucas-Carmichael number (A006972).
Analogous to A046025 as A006972 (Lucas-Carmichael numbers) is analogous to A002997 (Carmichael numbers).
LINKS
FORMULA
6*a(n) - 1 = A067256(n+1).
EXAMPLE
1 is in the sequence since 6*1 - 1 = 5, 12*1 - 1 = 11 and 18*1 - 1 = 17 are all primes, and 5*11*17 = 935 is a Lucas-Carmichael number.
MATHEMATICA
seq = {}; Do[ If[ AllTrue[{6 m - 1, 12 m - 1, 18 m - 1}, PrimeQ ], AppendTo[seq, m] ], {m, 1, 10^5} ]; seq
PROG
(PARI) isok(n) = isprime(6*n-1) && isprime(12*n-1) && isprime(18*n-1); \\ Michel Marcus, Aug 11 2017
CROSSREFS
Intersection of A024898, A138620 and A138918.
Sequence in context: A238315 A091311 A008540 * A000867 A191142 A049770
KEYWORD
nonn
AUTHOR
Amiram Eldar, Aug 11 2017
STATUS
approved