login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159316
E.g.f. A(x) satisfies: d/dx log(A(x)) = A(2*x)^2.
2
1, 1, 5, 61, 1481, 66361, 5390285, 803252341, 224927827601, 121129543555441, 127545238071714965, 265238370995975176621, 1095520296374502654008921, 9015241470782090221556516521, 148067303294213271502974778276445
OFFSET
0,3
COMMENTS
Row 2 of array A159314.
FORMULA
E.g.f. satisfies: A'(x) = A(x)*A(2*x)^2.
a(n) = Sum_{i=0..n-1} C(n-1,i)*4^i*A126444(i)*a(n-1-i) for n>0 with a(0)=1.
E.g.f.: A(x) = G(2*x)^(1/2) where G(x) = e.g.f. of A126444.
E.g.f.: A(x) = F(4*x)^(1/4) where F(x) = e.g.f. of A159315.
EXAMPLE
E.g.f.: A(x) = 1 +x +5*x^2/2! +61*x^3/3!+1481*x^4/4!+66361*x^5/5! +...
Related expansions:
log(A(x)) = x + 4*x^2/2! + 48*x^3/3! + 1216*x^4/4! + 57600*x^5/5! +...
A(2*x)^2 = 1 + 4*x + 48*x^2/2! + 1216*x^3/3! + 57600*x^4/4! +...
A(x)*A(2*x)^2 = 1 + 5*x +61*x^2/2! +1481*x^3/3! +66361*x^4/4! +...
PROG
(PARI) {a(n)=local(A=vector(n+4, j, 1+j*x)); for(i=0, n+3, for(j=0, n+2, m=n+3-j; A[m]=exp(intformal((A[m+1]+x*O(x^n))^(2^(m-1)))))); n!*polcoeff(A[3], n, x)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 19 2009
STATUS
approved