login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159319
a(n) = 3^(n^2+n) * C(2*n-1 + 1/3^n, n) / (n*3^n + 1).
1
1, 3, 126, 66708, 379033074, 21399656315607, 11566324342205917416, 58678275719834357303044728, 2762222169999029718435709903699050, 1197781369953334546750963984948238943438411
OFFSET
0,2
LINKS
FORMULA
G.f.: A(x) = Sum_{n>=0} a(n)*x^n/3^(n^2+n).
G.f.: A(x) = Sum_{n>=0} log(F(x/3^n))^n/n! and
a(n)/3^(n^2+n) = [x^n] F(x)^(1/3^n) where
F(x) = (1-sqrt(1-4*x))/(2*x) is the Catalan function (A000108).
a(n)/3^(n^2+n) = [x^n] 1/(1-x)^(n + 1/3^n)/(n*3^n + 1).
Radius of convergence of series A(x) is |x| <= 3/4.
EXAMPLE
G.f.: A(x) = 1 + 3*x/3^2 + 126*x^2/3^6 + 66708*x^3/3^12 + 379033074*x^4/3^20 +...
A(x) = Sum_{n>=0} log( (1-sqrt(1-4*x/3^n))/(2*x/3^n) )^n/n!.
A(x) = 1 + log(F(x/3)) + log(F(x/9))^2/2! + log(F(x/27))^3/3! +... where F(x) = (1-sqrt(1-4*x))/(2*x).
Special values.
A(3/4) = 1 + log(2) + log(6-6*sqrt(2/3))^2/2! + log(18-18*sqrt(8/9))^3/3! + log(54-54*sqrt(26/27))^4/4! +...
A(3/4) = 1.6977820781412737038286578011417848301231627494589650...
A(-3/4) = 1 + log(2*sqrt(2)-2) + log(6*sqrt(4/3)-6)^2/2! + log(18*sqrt(10/9)-18)^3/3! + log(54*sqrt(28/27)-54)^4/4! +...
A(-3/4) = 0.8145458917316632938137444904602229430460096517471900...
Illustrate (3^n)-th root formula:
a(n)/3^(n^2+n) = [x^n] F(x)^(1/3^n) or, equivalently,
a(n) = [x^n] F(3^(n+1)*x)^(1/3^n) where F(x)=Catalan(x):
F(3*x) = (1) + 3*x + 18*x^2 + 135*x^3 + 1134*x^4 + 10206*x^5 +...
F(9*x)^(1/3) = 1 + (3)*x + 45*x^2 + 936*x^3 + 22572*x^4 +...
F(27*x)^(1/9) = 1 + 3*x + (126)*x^2 + 7659*x^3 + 546480*x^4 +...
F(81*x)^(1/27) = 1 + 3*x + 369*x^2 + (66708)*x^3 + 14215230*x^4 +...
F(243*x)^(1/81) = 1 + 3*x + 1098*x^2 + 593775*x^3 + (379033074)*x^4 +...
coefficients in parenthesis form the initial terms of this sequence.
MATHEMATICA
Table[3^(n^2 +n)*Binomial[2*n -1 +1/3^n, n]/(n*3^n +1), {n, 0, 50}] (* G. C. Greubel, Jun 26 2018 *)
PROG
(PARI) {a(n)=3^(n^2+n)*binomial(2*n-1+1/3^n, n)/(n*3^n + 1)}
(PARI) {a(n)=3^(n^2+n)*polcoeff(1/(1-x+x*O(x^n))^(n+1/3^n)/(n*3^n + 1), n)}
(PARI) {a(n)=3^(n^2+n)*polcoeff(((1-sqrt(1-4*x+x^2*O(x^n)))/(2*x))^(1/3^n), n)}
(PARI) {a(n)=3^(n^2+n)*polcoeff(sum(k=0, n, log((1-sqrt(1-4*x/3^k+x^2*O(x^n)))/(2*x/3^k))^k/k!), n)}
(Magma) [3^(n^2 +n)*Binomial(2*n -1 +1/3^n, n)/(n*3^n +1): n in [0..40]]; // G. C. Greubel, Jun 26 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 23 2009
STATUS
approved