login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 3^(n^2+n) * C(2*n-1 + 1/3^n, n) / (n*3^n + 1).
1

%I #6 Sep 08 2022 08:45:43

%S 1,3,126,66708,379033074,21399656315607,11566324342205917416,

%T 58678275719834357303044728,2762222169999029718435709903699050,

%U 1197781369953334546750963984948238943438411

%N a(n) = 3^(n^2+n) * C(2*n-1 + 1/3^n, n) / (n*3^n + 1).

%H G. C. Greubel, <a href="/A159319/b159319.txt">Table of n, a(n) for n = 0..45</a>

%F G.f.: A(x) = Sum_{n>=0} a(n)*x^n/3^(n^2+n).

%F G.f.: A(x) = Sum_{n>=0} log(F(x/3^n))^n/n! and

%F a(n)/3^(n^2+n) = [x^n] F(x)^(1/3^n) where

%F F(x) = (1-sqrt(1-4*x))/(2*x) is the Catalan function (A000108).

%F a(n)/3^(n^2+n) = [x^n] 1/(1-x)^(n + 1/3^n)/(n*3^n + 1).

%F Radius of convergence of series A(x) is |x| <= 3/4.

%e G.f.: A(x) = 1 + 3*x/3^2 + 126*x^2/3^6 + 66708*x^3/3^12 + 379033074*x^4/3^20 +...

%e A(x) = Sum_{n>=0} log( (1-sqrt(1-4*x/3^n))/(2*x/3^n) )^n/n!.

%e A(x) = 1 + log(F(x/3)) + log(F(x/9))^2/2! + log(F(x/27))^3/3! +... where F(x) = (1-sqrt(1-4*x))/(2*x).

%e Special values.

%e A(3/4) = 1 + log(2) + log(6-6*sqrt(2/3))^2/2! + log(18-18*sqrt(8/9))^3/3! + log(54-54*sqrt(26/27))^4/4! +...

%e A(3/4) = 1.6977820781412737038286578011417848301231627494589650...

%e A(-3/4) = 1 + log(2*sqrt(2)-2) + log(6*sqrt(4/3)-6)^2/2! + log(18*sqrt(10/9)-18)^3/3! + log(54*sqrt(28/27)-54)^4/4! +...

%e A(-3/4) = 0.8145458917316632938137444904602229430460096517471900...

%e Illustrate (3^n)-th root formula:

%e a(n)/3^(n^2+n) = [x^n] F(x)^(1/3^n) or, equivalently,

%e a(n) = [x^n] F(3^(n+1)*x)^(1/3^n) where F(x)=Catalan(x):

%e F(3*x) = (1) + 3*x + 18*x^2 + 135*x^3 + 1134*x^4 + 10206*x^5 +...

%e F(9*x)^(1/3) = 1 + (3)*x + 45*x^2 + 936*x^3 + 22572*x^4 +...

%e F(27*x)^(1/9) = 1 + 3*x + (126)*x^2 + 7659*x^3 + 546480*x^4 +...

%e F(81*x)^(1/27) = 1 + 3*x + 369*x^2 + (66708)*x^3 + 14215230*x^4 +...

%e F(243*x)^(1/81) = 1 + 3*x + 1098*x^2 + 593775*x^3 + (379033074)*x^4 +...

%e coefficients in parenthesis form the initial terms of this sequence.

%t Table[3^(n^2 +n)*Binomial[2*n -1 +1/3^n, n]/(n*3^n +1), {n, 0, 50}] (* _G. C. Greubel_, Jun 26 2018 *)

%o (PARI) {a(n)=3^(n^2+n)*binomial(2*n-1+1/3^n, n)/(n*3^n + 1)}

%o (PARI) {a(n)=3^(n^2+n)*polcoeff(1/(1-x+x*O(x^n))^(n+1/3^n)/(n*3^n + 1),n)}

%o (PARI) {a(n)=3^(n^2+n)*polcoeff(((1-sqrt(1-4*x+x^2*O(x^n)))/(2*x))^(1/3^n),n)}

%o (PARI) {a(n)=3^(n^2+n)*polcoeff(sum(k=0,n,log((1-sqrt(1-4*x/3^k+x^2*O(x^n)))/(2*x/3^k))^k/k!),n)}

%o (Magma) [3^(n^2 +n)*Binomial(2*n -1 +1/3^n, n)/(n*3^n +1): n in [0..40]]; // _G. C. Greubel_, Jun 26 2018

%Y Cf. A159318, A158093, A159558, A159478, A000108.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Apr 23 2009