|
|
A258672
|
|
Number of partitions of n*2^n into parts that are at most n.
|
|
3
|
|
|
0, 1, 5, 61, 2280, 273052, 110537709, 156456474138, 790541795804221, 14445283925963101577, 963056085414756870071490, 235864774408401842540220265704, 213426797830699546133563821747980513, 717147073290996884137625501875655000693923
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Conjecture: If f(n) >= O(n^4) then "number of partitions of f(n) into parts that are at most n" is asymptotic to f(n)^(n-1) / (n!*(n-1)!). For the examples see A238016 and A238010.
|
|
LINKS
|
|
|
FORMULA
|
a(n) ~ n^n * 2^(n*(n-1)) / (n!)^2.
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|