|
|
A258670
|
|
Number of partitions of (2*n)! into parts that are at most n.
|
|
5
|
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Conjecture: If f(n) >= O(n^4) then "number of partitions of f(n) into parts that are at most n" is asymptotic to f(n)^(n-1) / (n!*(n-1)!). For the examples see A238016 and A238010.
|
|
LINKS
|
Vaclav Kotesovec, Table of n, a(n) for n = 0..21
G. J. Rieger, Über Partitionen, Mathematische Annalen (1959), Volume: 138, page 356-362
A. V. Sills and D. Zeilberger, Formulae for the number of partitions of n into at most m parts (using the quasi-polynomial ansatz) (arXiv:1108.4391 [math.CO])
|
|
FORMULA
|
a(n) ~ (2*n)!^(n-1) / (n!*(n-1)!).
|
|
CROSSREFS
|
Cf. A236810, A237998, A238000, A238010, A238016, A258668, A258669, A258671.
Sequence in context: A076811 A203691 A220981 * A048917 A081317 A203675
Adjacent sequences: A258667 A258668 A258669 * A258671 A258672 A258673
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Vaclav Kotesovec, Jun 07 2015
|
|
STATUS
|
approved
|
|
|
|