|
|
A236810
|
|
Number of solutions to Sum_{k=1..n} k*c(k) = n! , c(k) >= 0.
|
|
12
|
|
|
0, 1, 2, 7, 169, 91606, 2407275335, 4592460368601183, 855163933625625205568537, 20560615981766266405801870502139241, 82864945825700191674729490954631752385038099201, 70899311833745096407560015806403481692583415598602691709750081
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
a(n) is the number of partitions of n! into parts that are at most n. a(3) = 7: [1,1,1,1,1,1], [2,1,1,1,1], [2,2,1,1], [2,2,2], [3,1,1,1], [3,2,1], [3,3]. - Alois P. Heinz, Feb 08 2014
|
|
LINKS
|
|
|
FORMULA
|
a(n) = [x^(n!)] Product_{k=1..n} 1/(1-x^k).
a(n) ~ n * (n!)^(n-3) ~ n^(n^2-5*n/2-1/2) * (2*Pi)^((n-3)/2) / exp(n*(n-3)-1/12). - Vaclav Kotesovec, Jun 05 2015
|
|
EXAMPLE
|
for n=3, the 7 solutions are: 3! = 6,0,0 ; 4,1,0 ; 2,2,0 ; 0,3,0 ; 3,0,1 ; 1,1,1 ; 0,0,2.
|
|
MATHEMATICA
|
Table[Coefficient[Series[Product[1/(1- x^k), {k, n}], {x, 0, n!}], x^(n!)] , {n, 7}]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|