OFFSET
0,13
COMMENTS
In general, column k>=2 is asymptotic to k^(n*(n-1)) / (n!*(n-1)!). - Vaclav Kotesovec, Jun 05 2015
LINKS
Alois P. Heinz, Antidiagonals n = 0..43, flattened
A. V. Sills and D. Zeilberger, Formulae for the number of partitions of n into at most m parts (using the quasi-polynomial ansatz) (arXiv:1108.4391 [math.CO])
FORMULA
A(n,k) = [x^(k^n)] Product_{j=1..n} 1/(1-x^j).
EXAMPLE
A(3,2) = 10: 332, 2222, 3221, 3311, 22211, 32111, 221111, 311111, 2111111, 11111111.
A(2,3) = 5: 22221, 222111, 2211111, 21111111, 111111111.
A(2,4) = 9: 22222222, 222222211, 2222221111, 22222111111, 222211111111, 2221111111111, 22111111111111, 211111111111111, 1111111111111111.
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, ...
1, 1, 3, 5, 9, 13, ...
1, 1, 10, 75, 374, 1365, ...
1, 1, 64, 4410, 123464, 1736385, ...
1, 1, 831, 1366617, 393073019, 33432635477, ...
MATHEMATICA
A[n_, k_] := SeriesCoefficient[Product[1/(1-x^j), {j, 1, n}], {x, 0, k^n}]; A[0, 0] = 0; Table[A[n-k, k], {n, 0, 9}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Feb 17 2017 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Feb 16 2014
STATUS
approved