login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112243
Expansion of exp(x*(1+x)/(1-2*x)).
0
1, 1, 7, 55, 577, 7441, 113671, 2003527, 39971905, 889608097, 21834577351, 585555975511, 17027451783937, 533460597334705, 17908302027585607, 641152804988733031, 24380543011087797121, 981149507717921468737, 41653436572936172408455, 1860174362332664149119607
OFFSET
0,3
COMMENTS
In general, e.g.f. exp(x(1+ax)/(1-bx)) has general term sum{i=0..n, sum{j=0..n, a^j*b^(n-i-j)*C(i,j)C(n-j-1,n-i-j)*n!/i!}}.
Let k be a positive integer. The sequence obtained by reducing a(n) modulo k is a purely periodic sequence whose period divides k. For example, taken modulo 14 the sequence becomes [1, 1, 7, 13, 3, 7, 5, 1, 1, 7, 13, 3, 7, 5, ...], a periodic sequence of period 7. Cf. A047974. - Peter Bala, Jul 15 2022
FORMULA
E.g.f.: exp(x*(1+x)/(1-2*x)).
a(n) = Sum_{i = 0..n} Sum_{j = 0..n} 2^(n-i-j)*C(i, j)*C(n-j-1, n-i-j)*n!/i!.
a(n) ~ 3^(1/4) * 2^(n-1) * n^(n-1/4) * exp(sqrt(3*n)-n-5/8). - Vaclav Kotesovec, Sep 25 2013
Conjecture: a(n) +(-4*n+3)*a(n-1) +2*(n-1)*(2*n-5)*a(n-2) +2*(n-1)*(n-2)*a(n-3)=0. - R. J. Mathar, Feb 20 2015
The e.g.f. A(x) satisfies the differential equation (4*x^2 - 4*x + 1)*A'(x) + (2*x^2 - 2*x - 1)*A(x) = 0 with A(0) = 1. Mathar's conjectured recurrence follows easily from this. - Peter Bala, Jul 15 2022
MATHEMATICA
With[{nn=20}, CoefficientList[Series[Exp[(x(x+1))/(1-2x)], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Sep 21 2011 *)
CROSSREFS
Sequence in context: A306046 A362080 A355409 * A083836 A326885 A159313
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Aug 29 2005
STATUS
approved