login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024083
a(n) = 7^n - n^8.
2
1, 6, -207, -6218, -63135, -373818, -1561967, -4941258, -11012415, -2693114, 182475249, 1762967862, 13411305505, 96073279686, 676747283793, 4744998619318, 33228635602305, 232623538229766, 1628402577949873
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (16, -99, 336, -714, 1008, -966, 624, -261, 64, -7).
FORMULA
a(0)=1, a(1)=6, a(2)=-207, a(3)=-6218, a(4)=-63135, a(5)=-373818, a(6)=-1561967, a(7)=-4941258, a(8)=-11012415, a(9)=-2693114, a(n)= 16*a(n-1) - 99*a(n-2) + 336*a(n-3) - 714*a(n-4) + 1008*a(n-5) - 966*a(n-6) + 624*a(n-7) - 261*a(n-8) + 64*a(n-9) - 7*a(n-10). - Harvey P. Dale, Jul 12 2014
MAPLE
seq(7^k-k^8, k=0..20); # Muniru A Asiru, Jul 15 2018
MATHEMATICA
Table[7^n-n^8, {n, 0, 60}] (* Vladimir Joseph Stephan Orlovsky, Feb 15 2011 *)
LinearRecurrence[{16, -99, 336, -714, 1008, -966, 624, -261, 64, -7}, {1, 6, -207, -6218, -63135, -373818, -1561967, -4941258, -11012415, -2693114}, 20] (* Harvey P. Dale, Jul 12 2014 *)
PROG
(Magma) [7^n-n^8: n in [0..20]]; // Vincenzo Librandi, Jul 04 2011
(GAP) List([0..20], n->7^n-n^8); # Muniru A Asiru, Jul 15 2018
CROSSREFS
Sequence in context: A173370 A159307 A284768 * A172530 A201237 A120436
KEYWORD
sign,easy
STATUS
approved