login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343088
Triangle read by rows: T(n,k) is the number of connected labeled graphs with n edges and k vertices, 1 <= k <= n+1.
14
1, 0, 1, 0, 0, 3, 0, 0, 1, 16, 0, 0, 0, 15, 125, 0, 0, 0, 6, 222, 1296, 0, 0, 0, 1, 205, 3660, 16807, 0, 0, 0, 0, 120, 5700, 68295, 262144, 0, 0, 0, 0, 45, 6165, 156555, 1436568, 4782969, 0, 0, 0, 0, 10, 4945, 258125, 4483360, 33779340, 100000000
OFFSET
0,6
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
EXAMPLE
Triangle begins:
1;
0, 1;
0, 0, 3;
0, 0, 1, 16;
0, 0, 0, 15, 125;
0, 0, 0, 6, 222, 1296;
0, 0, 0, 1, 205, 3660, 16807;
0, 0, 0, 0, 120, 5700, 68295, 262144;
0, 0, 0, 0, 45, 6165, 156555, 1436568, 4782969;
...
MATHEMATICA
row[n_] := (SeriesCoefficient[#, {y, 0, n}]& /@ CoefficientList[ Log[Sum[x^k*(1+y)^Binomial[k, 2]/k!, {k, 0, n+1}]] + O[x]^(n+2), x]* Range[0, n+1]!) // Rest;
Table[row[n], {n, 0, 9}] // Flatten (* Jean-François Alcover, Aug 03 2022, after Andrew Howroyd *)
PROG
(PARI)
Row(n)={Vec(serlaplace(polcoef(log(O(x^2*x^n)+sum(k=0, n+1, x^k*(1 + y + O(y*y^n))^binomial(k, 2)/k!)), n, y)), -(n+1))}
{ for(n=0, 8, print(Row(n))) }
CROSSREFS
Main diagonal is A000272.
Subsequent diagonals give the number of connected labeled graphs with n nodes and n+k edges for k=0..11: A057500, A061540, A061541, A061542, A061543, A096117, A061544 A096150, A096224, A182294, A182295, A182371.
Row sums are A322137.
Column sums are A001187.
Cf. A054923 (unlabeled), A062734 (transpose), A290776 (multigraphs), A322147 (loops allowed), A331437 (series-reduced).
Sequence in context: A238129 A344118 A212221 * A193291 A096936 A115979
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Apr 14 2021
STATUS
approved