login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212221
Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) is 1/(2*n) times the number of n-colorings of the complete tripartite graph K_(k,k,k).
3
0, 0, 0, 0, 0, 1, 0, 0, 1, 3, 0, 0, 1, 12, 6, 0, 0, 1, 30, 78, 10, 0, 0, 1, 66, 474, 340, 15, 0, 0, 1, 138, 2238, 4780, 1095, 21, 0, 0, 1, 282, 9546, 46420, 32955, 2856, 28, 0, 0, 1, 570, 38958, 385660, 617775, 168546, 6412, 36
OFFSET
1,10
COMMENTS
The complete tripartite graph K_(n,n,n) has 3*n vertices and 3*n^2 = A033428(n) edges; see A212220 for example. The chromatic polynomial of K_(n,n,n) has 3*n+1 = A016777(n) coefficients.
LINKS
Eric Weisstein's World of Mathematics, Complete Tripartite Graph
FORMULA
A(n,k) = 1/(2*n) * Sum_{j,m=1..k} S2(k,j) * S2(k,m) * (n-j-m)^k * Product_{i=0..j+m-1} (n-i) with S2 = A008277.
A(n,n) = A282247(n).
EXAMPLE
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, 0, ...
0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, ...
3, 12, 30, 66, 138, 282, 570, ...
6, 78, 474, 2238, 9546, 38958, 155994, ...
10, 340, 4780, 46420, 385660, 2995540, 22666780, ...
15, 1095, 32955, 617775, 9248595, 123920295, 1569542955, ...
MAPLE
P:= proc(n) option remember;
unapply(expand(add(add(Stirling2(n, k) *Stirling2(n, m)
*mul(q-i, i=0..k+m-1) *(q-k-m)^n, m=1..n), k=1..n)), q)
end:
A:= (n, k)-> P(k)(n)/(2*n):
seq(seq(A(n, 1+d-n), n=1..d), d=1..12);
MATHEMATICA
p[n_] := p[n] = Function[q, Expand[Sum[Sum[StirlingS2[n, k] * StirlingS2[n, m] * Product[q-i, {i, 0, k+m-1}]*(q-k-m)^n, {m, 1, n}], {k, 1, n}]]]; a[n_, k_] := p[k][n]/(2*n); Table[Table[a[n, 1+d-n], {n, 1, d}], {d, 1, 12}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from Maple *)
CROSSREFS
Rows 1+2,3-4 give: A000004, A000012, A089143(n-1) = 1/2*A182464(n-2) = 1/3*A182467(n-2).
Columns 1-2 give: A000217(n-2), 1/(2*n)*A115400(n).
Sequence in context: A350450 A238129 A344118 * A343088 A193291 A096936
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, May 06 2012
STATUS
approved