login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) is 1/(2*n) times the number of n-colorings of the complete tripartite graph K_(k,k,k).
3

%I #26 Sep 21 2018 22:15:12

%S 0,0,0,0,0,1,0,0,1,3,0,0,1,12,6,0,0,1,30,78,10,0,0,1,66,474,340,15,0,

%T 0,1,138,2238,4780,1095,21,0,0,1,282,9546,46420,32955,2856,28,0,0,1,

%U 570,38958,385660,617775,168546,6412,36

%N Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) is 1/(2*n) times the number of n-colorings of the complete tripartite graph K_(k,k,k).

%C The complete tripartite graph K_(n,n,n) has 3*n vertices and 3*n^2 = A033428(n) edges; see A212220 for example. The chromatic polynomial of K_(n,n,n) has 3*n+1 = A016777(n) coefficients.

%H Alois P. Heinz, <a href="/A212221/b212221.txt">Antidiagonals n = 1..100, flattened</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CompleteTripartiteGraph.html">Complete Tripartite Graph</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Chromatic_polynomial">Chromatic Polynomial</a>

%F A(n,k) = 1/(2*n) * Sum_{j,m=1..k} S2(k,j) * S2(k,m) * (n-j-m)^k * Product_{i=0..j+m-1} (n-i) with S2 = A008277.

%F A(n,n) = A282247(n).

%e Square array A(n,k) begins:

%e 0, 0, 0, 0, 0, 0, 0, ...

%e 0, 0, 0, 0, 0, 0, 0, ...

%e 1, 1, 1, 1, 1, 1, 1, ...

%e 3, 12, 30, 66, 138, 282, 570, ...

%e 6, 78, 474, 2238, 9546, 38958, 155994, ...

%e 10, 340, 4780, 46420, 385660, 2995540, 22666780, ...

%e 15, 1095, 32955, 617775, 9248595, 123920295, 1569542955, ...

%p P:= proc(n) option remember;

%p unapply(expand(add(add(Stirling2(n, k) *Stirling2(n, m)

%p *mul(q-i, i=0..k+m-1) *(q-k-m)^n, m=1..n), k=1..n)), q)

%p end:

%p A:= (n, k)-> P(k)(n)/(2*n):

%p seq(seq(A(n, 1+d-n), n=1..d), d=1..12);

%t p[n_] := p[n] = Function[q, Expand[Sum[Sum[StirlingS2[n, k] * StirlingS2[n, m] * Product[q-i, {i, 0, k+m-1}]*(q-k-m)^n, {m, 1, n}], {k, 1, n}]]]; a[n_, k_] := p[k][n]/(2*n); Table[Table[a[n, 1+d-n], {n, 1, d}], {d, 1, 12}] // Flatten (* _Jean-François Alcover_, Dec 13 2013, translated from Maple *)

%Y Rows 1+2,3-4 give: A000004, A000012, A089143(n-1) = 1/2*A182464(n-2) = 1/3*A182467(n-2).

%Y Columns 1-2 give: A000217(n-2), 1/(2*n)*A115400(n).

%Y Cf. A008277, A016777, A033428, A212220, A282247.

%K nonn,tabl

%O 1,10

%A _Alois P. Heinz_, May 06 2012