login
A115400
Number of n-colorings of the octahedral graph.
13
0, 0, 0, 6, 96, 780, 4080, 15330, 45696, 115416, 257760, 523710, 987360, 1752036, 2957136, 4785690, 7472640, 11313840, 16675776, 24006006, 33844320, 46834620, 63737520, 85443666, 112987776, 147563400, 190538400, 243471150, 308127456
OFFSET
0,4
COMMENTS
The octahedral graph is the dual of the cubical graph whose chromatic polynomial is evaluated in A140986.
LINKS
Eric Weisstein's World of Mathematics, Octahedral Graph.
FORMULA
a(n) = n*(n-1)*(n-2)*(n^3 - 9*n^2 + 29*n - 32).
G.f.: 6*x^3*(1 + 9*x + 39*x^2 + 71*x^3)/(1-x)^7. - Colin Barker, Feb 12 2012
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n > 6. - Chai Wah Wu, Jan 19 2024
MATHEMATICA
Table[n*(n-1)*(n-2)*(n^3-9*n^2+29*n-32), {n, 0, 50}] (* Vincenzo Librandi, Feb 12 2012 *)
PROG
(Magma) [n*(n-1)*(n-2)*(n^3 - 9*n^2 + 29*n - 32): n in [0..50]]; // Vincenzo Librandi, Feb 12 2012
(Maxima) A115400(n):=n*(n-1)*(n-2)*(n^3 - 9*n^2 + 29*n - 32)$
makelist(A115400(n), n, 0, 30); /* Martin Ettl, Nov 03 2012 */
CROSSREFS
Cf. A140986.
Sequence in context: A303212 A226549 A053338 * A279868 A055358 A030989
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Aug 25 2008
STATUS
approved