|
|
A140986
|
|
Number of n-colorings of the cubical graph.
|
|
14
|
|
|
0, 0, 2, 114, 2652, 29660, 198030, 932862, 3440024, 10599192, 28478970, 68716010, 152040372, 313269684, 608134982, 1122341430, 1983307440, 3375066032, 5556852594, 8885943522, 13845350540, 21077015820, 31421193342, 45962742254, 66085098312, 93532729800
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Eric M. Schmidt, Table of n, a(n) for n = 0..1000
Eric Weisstein's World of Mathematics, Chromatic Polynomial
Eric Weisstein's World of Mathematics, Cubical Graph
|
|
FORMULA
|
a(n) = n^8-12*n^7+66*n^6-214*n^5+441*n^4-572*n^3+423*n^2-133*n.
G.f.: 2*x^2*(1+48*x+849*x^2+4864*x^3+8619*x^4+4848*x^5+931*x^6)/(1-x)^9. - Colin Barker, Apr 15 2012
a(n) = Sum_{k=1..8} k!*binomial(n,k)*A334159(3,k). - Andrew Howroyd, Apr 22 2020
|
|
MAPLE
|
a:= n-> n^8 -12*n^7 +66*n^6 -214*n^5 +441*n^4 -572*n^3 +423*n^2 -133*n:
seq(a(n), n=0..30); # Alois P. Heinz, Mar 01 2009
|
|
PROG
|
(Maxima)
A140986(n):=n^8-12*n^7+66*n^6-214*n^5+441*n^4-572*n^3 +423*n^2-133*n$
makelist(A140986(n), n, 0, 30); /* Martin Ettl, Nov 03 2012 */
|
|
CROSSREFS
|
Cf. A296914, A334159.
Sequence in context: A034312 A224871 A230471 * A157068 A008271 A209184
Adjacent sequences: A140983 A140984 A140985 * A140987 A140988 A140989
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Jonathan Vos Post, Jul 28 2008
|
|
EXTENSIONS
|
More terms from Alois P. Heinz, Mar 01 2009
|
|
STATUS
|
approved
|
|
|
|