login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290776
Triangle T(n,k) read by rows: the number of connected, loopless, non-oriented, vertex-labeled graphs with n >= 0 edges and k >= 1 vertices, allowing multi-edges.
3
1, 0, 1, 0, 1, 3, 0, 1, 7, 16, 0, 1, 12, 63, 125, 0, 1, 18, 162, 722, 1296, 0, 1, 25, 341, 2565, 10140, 16807, 0, 1, 33, 636, 7180, 47100, 169137, 262144, 0, 1, 42, 1092, 17335, 168285, 987567, 3271576, 4782969, 0, 1, 52, 1764, 37750, 509545, 4364017, 23315936, 72043092, 100000000
OFFSET
0,6
COMMENTS
This is the vertex-labeled companion to A191646.
LINKS
R. J. Mathar, Statistics on Small Graphs, arXiv:1709.09000 [math.CO] (2017), Table 62.
EXAMPLE
The triangle starts in row n=0 with 1 <= k <= n+1 vertices as
1;
0, 1;
0, 1, 3;
0, 1, 7, 16;
0, 1, 12, 63, 125;
0, 1, 18, 162, 722, 1296;
0, 1, 25, 341, 2565, 10140, 16807;
0, 1, 33, 636, 7180, 47100, 169137, 262144;
0, 1, 42, 1092, 17355, 168285, 987567, 3271576, 4782969;
0, 1, 52, 1764, 37750, 509545, 4364017, 23315936, 72043092, 100000000;
...
MATHEMATICA
S[m_, n_] := Binomial[Binomial[m, 2] + n - 1, n];
R[nn_] := Module[{cc = Array[0&, {nn, nn}]}, cc[[1, 1]] = 1; For[m = 1, m <= nn, m++, For[n = 1, n <= nn-1, n++, cc[[m, n+1]] = S[m, n] - S[m-1, n] - Sum[Sum[Binomial[m-1, i-1]*cc[[i, j+1]]*S[m-i, n-j], {j, 1, n}], {i, 2, m-1}]]]; cc // Transpose];
A = R[10];
Table[A[[n, k]], {n, 1, Length[A]}, {k, 1, n}] // Flatten (* Jean-François Alcover, Aug 13 2018, after Andrew Howroyd *)
PROG
(PARI) \\ here S(m, n) is m nodes with n edges, not necessarily connected
S(m, n)={ binomial(binomial(m, 2) + n - 1, n) }
R(N)={ my(C=matrix(N, N)); C[1, 1]=1; for(m=1, N, for(n=1, N-1, C[m, n+1] = S(m, n) - S(m-1, n) - sum(i=2, m-1, sum(j=1, n, binomial(m-1, i-1)*C[i, j+1]*S(m-i, n-j))))); C~; }
{ my(A=R(10)); for(n=1, #A, for(k=1, n, print1(A[n, k], ", ")); print) } \\ Andrew Howroyd, May 13 2018
CROSSREFS
Cf. A055998 (k=3), A000272 (diagonal), A060091 (k=4?), A060093 (k=5?).
Sequence in context: A349780 A261764 A216806 * A373086 A172249 A208758
KEYWORD
nonn,tabl
AUTHOR
R. J. Mathar, Aug 10 2017
EXTENSIONS
Terms a(34) and beyond from Andrew Howroyd, May 13 2018
STATUS
approved