login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373086
Triangle read by rows: T(n, k) is the number of parking functions of length n with preferences restricted to {1, ..., k} for 0 <= k <= n.
0
1, 0, 1, 0, 1, 3, 0, 1, 7, 16, 0, 1, 15, 61, 125, 0, 1, 31, 206, 671, 1296, 0, 1, 63, 659, 3130, 9031, 16807, 0, 1, 127, 2052, 13686, 54062, 144495, 262144, 0, 1, 255, 6297, 57867, 301321, 1059261, 2685817, 4782969, 0, 1, 511, 19162, 240049, 1616764, 7196785, 23343742, 56953279, 100000000
OFFSET
0,6
COMMENTS
Equivalently, this is the number of preference lists of n cars on k spots so that only n - k cars are unable to park.
LINKS
P. J. Cameron, D. Johannsen, T. Prellberg, and P. Schweitzer, Counting Defective Parking Functions, Electronic Journal of Combinatorics, Volume 15 (2008).
FORMULA
T(n, k) = k^n - Sum_{i=0..k-1} binomial(n, i)*(i+1)^(i-1)*(k-i-1)^(n-i).
T(n, k) = Sum_{i=k..n} (-1)^(n-i)*binomial(n, i)*(i+1)^(i-1)*(i-k+1)^(n-i).
EXAMPLE
Table begins:
1;
0, 1;
0, 1, 3;
0, 1, 7, 16;
0, 1, 15, 61, 125;
0, 1, 31, 206, 671, 1296;
0, 1, 63, 659, 3130, 9031, 16807;
0, 1, 127, 2052, 13686, 54062, 144495, 262144;
0, 1, 255, 6297, 57867, 301321, 1059261, 2685817, 4782969;
0, 1, 511, 19162, 240049, 1616764, 7196785, 23343742, 56953279, 100000000;
...
CROSSREFS
Cf. A000272 (diagonal), A000225 (column 2), A355645 (column 3, with offset 3).
Cf. A260693 (first differences of columns).
Sequence in context: A261764 A216806 A290776 * A172249 A208758 A320161
KEYWORD
nonn,tabl
AUTHOR
Jayden Thadani and Alan Kappler, May 23 2024
STATUS
approved